Solveeit Logo

Question

Question: Find‌ ‌whether‌ ‌the‌ ‌following‌ ‌series‌ ‌are‌ ‌convergent‌ ‌or‌ ‌divergent.‌ ‌ .\(1‌ ‌+‌ ‌\dfrac...

Find‌ ‌whether‌ ‌the‌ ‌following‌ ‌series‌ ‌are‌ ‌convergent‌ ‌or‌ ‌divergent.‌ ‌

.1‌‌+‌‌12.x24‌‌+‌‌1.3.52.4.6.x48‌‌+‌‌1.3.5.7.92.4.6.8.10.x612‌‌+‌‌...1‌ ‌+‌ ‌\dfrac{1}{2}.\dfrac{{{x^2}}}{4}‌ ‌+‌ ‌\dfrac{{1.3.5}}{{2.4.6}}.\dfrac{{{x^4}}}{8}‌ ‌+‌ ‌\dfrac{{1.3.5.7.9}}{{2.4.6.8.10}}.\dfrac{{{x^6}}}{{12}}‌ ‌+‌ ‌....‌ ‌ ‌

Explanation

Solution

Here we have to find the values of x for which the series converge or diverge.There are different tests there.we will start from d’Alembert Ratio Test and then Gauss Test.

Complete step-by-step answer:

Step 1: Let the given series be (to find proper )

un=12.x24+1.3.52.4.6.x48+1.3.5.7.92.4.6.8.10.x612+...\sum {{u_n}} = \dfrac{1}{2}.\dfrac{{{x^2}}}{4} + \dfrac{{1.3.5}}{{2.4.6}}.\dfrac{{{x^4}}}{8} + \dfrac{{1.3.5.7.9}}{{2.4.6.8.10}}.\dfrac{{{x^6}}}{{12}} + ...

Where un=1.3.5.7.9...(4n3)2.4.6.8.10...(4n2).x2n4n,n1{u_n} = \dfrac{{1.3.5.7.9...(4n - 3)}}{{2.4.6.8.10...(4n - 2)}}.\dfrac{{{x^{2n}}}}{{4n}}\,\,\,,n \geqslant 1

It is the nthn^{th} term of the above sequence and we can get all terms of the sequence by putting different values of n.

Step 2:

unun+1=1.3.5.7.9...(4n3)2.4.6.8.10...(4n2).x2n4n×2.4.6.8.10...(4n2)4n(4n+2)1.3.5.7.9...(4n3)(4n1)(4n+1).(4n+4)x2n+2\dfrac{{{u_n}}}{{{u_{n + 1}}}} = \dfrac{{1.3.5.7.9...(4n - 3)}}{{2.4.6.8.10...(4n - 2)}}.\dfrac{{{x^{2n}}}}{{4n}}\, \times \dfrac{{2.4.6.8.10...(4n - 2)4n(4n + 2)}}{{1.3.5.7.9...(4n - 3)(4n - 1)(4n + 1)}}.\dfrac{{(4n + 4)}}{{{x^{2n + 2}}}}

After cancelling out terms we get,

=4n(4n+2)(4n1)(4n+1)×(4n+4)4n×1x2= \dfrac{{4n(4n + 2)}}{{(4n - 1)(4n + 1)}} \times \dfrac{{(4n + 4)}}{{4n}} \times \dfrac{1}{{{x^2}}}

=(4n+2)(4n+4)(4n1)(4n+1).1x2 = \dfrac{{(4n + 2)(4n + 4)}}{{(4n - 1)(4n + 1)}}.\dfrac{1}{{{x^2}}}

Step 3:

limnunun+1=limn(4n+2)(4n+4)(4n1)(4n+1).1x2\displaystyle \lim_{n \to \infty} \dfrac{u_n}{u_{n + 1}} = \displaystyle \lim_{n \to \infty} \dfrac{{(4n + 2)(4n + 4)}}{{(4n - 1)(4n + 1)}}.\dfrac{1}{x^2}

We will take 4n common from each term of numerator and denominator and cancel that, then-

=limn(1+12n)(1+1n)(114n)(1+14n).1x2= \displaystyle \lim_{n \to \infty} \dfrac{{(1 + \dfrac{1}{{2n}})(1 + \dfrac{1}{n})}}{{(1 - \dfrac{1}{{4n}})(1 + \dfrac{1}{{4n}})}}.\dfrac{1}{{{x^2}}}

=1x2(aslimn1n=0)= \dfrac{1}{{{x^2}}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(as\,\,\displaystyle \lim_{n \to \infty} \dfrac{1}{n} = 0 )

Step 4:Then using Ratio Test,un\sum {{u_n}} converges for

1x2>1\dfrac{1}{{{x^2}}} > 1

x2<1\Rightarrow {x^2} < 1

x2<1\Rightarrow {x^2} < 1

x<1\Rightarrow |x| < 1

1<x<1\Rightarrow - 1 < x < 1

Step 5: Then using Ratio Test, diverges for

1x2<1\dfrac{1}{{{x^2}}} < 1

x2>1\Rightarrow {x^2} > 1

xR[1,1]\Rightarrow x \in R - [ - 1,1]

Step 6: Now we have to check for x=±1x = \pm 1. Let us try for Gauss’s Test.

Putting x=±1x = \pm 1 ,

unun+1=(4n+2)(4n+4)(4n1)(4n+1)\dfrac{{{u_n}}}{{{u_{n + 1}}}}\,\,\,\, = \,\dfrac{{(4n + 2)(4n + 4)}}{{(4n - 1)(4n + 1)}}

=(1+12n)(1+1n)(114n)(1+14n)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{{(1 + \dfrac{1}{{2n}})(1 + \dfrac{1}{n})}}{{(1 - \dfrac{1}{{4n}})(1 + \dfrac{1}{{4n}})}}

=(1+32n+12n2)(1116n2)1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = (1 + \dfrac{3}{{2n}} + \dfrac{1}{{2{n^2}}}){(1 - \dfrac{1}{{16{n^2}}})^{ - 1}}

=1+32n+o(1n2)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 1 + \dfrac{3}{{2n}} + o(\dfrac{1}{{{n^2}}})

Here the coefficient of 1nis32>1.\dfrac{1}{n}\,\,is\,\,\dfrac{3}{2}\,\, > 1. Therefore by Gauss’s Test ,the series converges for x[1,1]x \in [ - 1,1].

Then the series converges for x[1,1]x \in [ - 1,1] and diverges for xR[1,1]x \in R - [ - 1,1].

Note: Here R is the set of real numbers. Also o(1n2)o(\dfrac{1}{{{n^2}}}) denotes the terms of 1n\dfrac{1}{n} having power greater than or equal to 2.