Question
Question: Find whether the following function is differentiable at \[x = 1,2\] . \[f\left( x \right) = \lef...
Find whether the following function is differentiable at x=1,2 .
x \\\ 2 - x \\\ \- 2 + 3x - {x^2} \\\ \right.$$, \\
, \\
, \\
x \leqslant 1 \\
1 \leqslant x \leqslant 2 \\
x > 2 \\
Solution
First of all, the given function is continuous for all x<1 , 1<x<2 and x>2 , because it is a polynomial function. Now, for a function to be differentiable at any value of x, the L.H.D. (Left Hand side Derivative) must be equal to the R.H.D. (Right Hand side Derivative). So, find the L.H.D. and R.H.D. individually at the values of x=1,2 , and see whether L.H.D = R.H.D.
Complete step-by-step answer:
We have
, \\
, \\
, \\
x \leqslant 1 \\
1 \leqslant x \leqslant 2 \\
x > 2 \\
R.H.D. =x→1+limx−1f(x)−f(1)
$$
= \mathop {\lim }\limits_{x \to 1} \dfrac{{\left( {2 - x} \right) - 1}}{{x - 1}} \\
= \mathop {\lim }\limits_{x \to 1} \dfrac{{ - \left( {x - 1} \right)}}{{x - 1}} \\
= - 1 \\
R.H.D. =x→2+limx−2f(x)−f(2)
$$
= \mathop {\lim }\limits_{x \to 2} \dfrac{{\left( { - 2 + 3x - {x^2}} \right) - 0}}{{x - 2}} \\
= \mathop {\lim }\limits_{x \to 2} \dfrac{{ - \left( {{x^2} - 3x + 2} \right) - 0}}{{x - 2}} \\
= \mathop {\lim }\limits_{x \to 2} \dfrac{{ - \left( {x - 1} \right)\left( {x - 2} \right)}}{{x - 2}} \\
= \mathop {\lim }\limits_{x \to 2} - \left( {x - 1} \right) \\
= - 1 \\