Solveeit Logo

Question

Question: Find whether \({{\left( 100 \right)}^{50}}+{{\left( 99 \right)}^{50}}\) is: (a) \(<{{\left( 101 \...

Find whether (100)50+(99)50{{\left( 100 \right)}^{50}}+{{\left( 99 \right)}^{50}} is:
(a) <(101)50<{{\left( 101 \right)}^{50}}
(b) <(101)<\left( 101 \right)
(c) >(101)50>{{\left( 101 \right)}^{50}}
(d) >(101)>\left( 101 \right)

Explanation

Solution

Hint: Use binomial expansion to expand (101)50{{\left( 101 \right)}^{50}} and (99)50{{\left( 99 \right)}^{50}} . Then subtract the two expressions obtained to get a new expression. Use the elements of the new expression to arrive at a relation between (100)50+(99)50{{\left( 100 \right)}^{50}}+{{\left( 99 \right)}^{50}} and (101)50{{\left( 101 \right)}^{50}} .

Complete step-by-step answer:
We need to find the relation between (100)50+(99)50{{\left( 100 \right)}^{50}}+{{\left( 99 \right)}^{50}} and (101)50{{\left( 101 \right)}^{50}} .
We will use binomial expansion to solve this question.
First, let us define binomial expansion.
The binomial expansion (or binomial theorem) describes the algebraic expansion of powers of a binomial. According to the theorem, it is possible to expand (x+y)n{{\left( x+y \right)}^{n}} into a sum involving terms of the form axbyca{{x}^{b}}{{y}^{c}} , where the exponents b and c are non negative integers with b + c = n, and the coefficient a of each term is a specific positive integer depending on n and b.
Binomial expansion gives us the formula:
(a+b)n=0nCanb0+1nCan1b1+...+nnCa0bn{{\left( a+b \right)}^{n}}={}_{0}^{n}C\cdot {{a}^{n}}{{b}^{0}}+{}_{1}^{n}C\cdot {{a}^{n-1}}{{b}^{1}}+...+{}_{n}^{n}C\cdot {{a}^{0}}{{b}^{n}}
Let us first evaluate (101)50{{\left( 101 \right)}^{50}}
(101)50=(100+1)50{{\left( 101 \right)}^{50}}={{\left( 100+1 \right)}^{50}}
(101)50=10050+150C10049+250C10048+...+1{{\left( 101 \right)}^{50}}={{100}^{50}}+{}_{1}^{50}C\cdot {{100}^{49}}+{}_{2}^{50}C\cdot {{100}^{48}}+...+1 (101)50=(100+1)50 (101)50=10050+150C10049+250C10048+...+1  \begin{aligned} & {{\left( 101 \right)}^{50}}={{\left( 100+1 \right)}^{50}} \\\ & {{\left( 101 \right)}^{50}}={{100}^{50}}+{}_{1}^{50}C\cdot {{100}^{49}}+{}_{2}^{50}C\cdot {{100}^{48}}+...+1 \\\ & \\\ \end{aligned} …(1)
Now, we will evaluate (99)50{{\left( 99 \right)}^{50}}
(99)50=(1001)50{{\left( 99 \right)}^{50}}={{\left( 100-1 \right)}^{50}}
(99)50=10050150C10049+250C10048...+1{{\left( 99 \right)}^{50}}={{100}^{50}}-{}_{1}^{50}C\cdot {{100}^{49}}+{}_{2}^{50}C\cdot {{100}^{48}}-...+1 …(2)
We will now subtract equation (2) from equation (1) .
(101)50(99)50=(10050+150C10049+250C10048+...+1)(10050150C10049+250C10048...+1){{\left( 101 \right)}^{50}}-{{\left( 99 \right)}^{50}}=\left( {{100}^{50}}+{}_{1}^{50}C\cdot {{100}^{49}}+{}_{2}^{50}C\cdot {{100}^{48}}+...+1 \right)-\left( {{100}^{50}}-{}_{1}^{50}C\cdot {{100}^{49}}+{}_{2}^{50}C\cdot {{100}^{48}}-...+1 \right) (101)50(99)50=(10050+150C10049+250C10048+...+1)10050+150C10049250C10048+...1{{\left( 101 \right)}^{50}}-{{\left( 99 \right)}^{50}}=\left( {{100}^{50}}+{}_{1}^{50}C\cdot {{100}^{49}}+{}_{2}^{50}C\cdot {{100}^{48}}+...+1 \right)-{{100}^{50}}+{}_{1}^{50}C\cdot {{100}^{49}}-{}_{2}^{50}C\cdot {{100}^{48}}+...-1 (101)50(99)50=2×(150C10049+350C10047+...){{\left( 101 \right)}^{50}}-{{\left( 99 \right)}^{50}}=2\times \left( {}_{1}^{50}C\cdot {{100}^{49}}+{}_{3}^{50}C\cdot {{100}^{47}}+... \right)
(101)50(99)50=2×150C10049+2×(350C10047+550C10045+...){{\left( 101 \right)}^{50}}-{{\left( 99 \right)}^{50}}=2\times {}_{1}^{50}C\cdot {{100}^{49}}+2\times \left( {}_{3}^{50}C\cdot {{100}^{47}}+{}_{5}^{50}C\cdot {{100}^{45}}+... \right)
As we know that 150C=50{}_{1}^{50}C=50 . Substituting this in above equation, we will get the following:
(101)50(99)50=2×50×10049+2×(350C10047+550C10045+...){{\left( 101 \right)}^{50}}-{{\left( 99 \right)}^{50}}=2\times 50\times {{100}^{49}}+2\times \left( {}_{3}^{50}C\cdot {{100}^{47}}+{}_{5}^{50}C\cdot {{100}^{45}}+... \right)
As 2×50=1002\times 50=100 . Substituting this in above equation, we will get the following:
(101)50(99)50=100×10049+2×(350C10047+550C10045+...){{\left( 101 \right)}^{50}}-{{\left( 99 \right)}^{50}}=100\times {{100}^{49}}+2\times \left( {}_{3}^{50}C\cdot {{100}^{47}}+{}_{5}^{50}C\cdot {{100}^{45}}+... \right)
(101)50(99)50=10050+2×(350C10047+550C10045+...){{\left( 101 \right)}^{50}}-{{\left( 99 \right)}^{50}}={{100}^{50}}+2\times \left( {}_{3}^{50}C\cdot {{100}^{47}}+{}_{5}^{50}C\cdot {{100}^{45}}+... \right)
Now, let P=2×(350C10047+550C10045+...)P=2\times \left( {}_{3}^{50}C\cdot {{100}^{47}}+{}_{5}^{50}C\cdot {{100}^{45}}+... \right) , where P is some positive number.
Substituting this in above equation, we will get the following:
(101)50(99)50=10050+P{{\left( 101 \right)}^{50}}-{{\left( 99 \right)}^{50}}={{100}^{50}}+P
Also, we know that:
10050+P>10050{{100}^{50}}+P>{{100}^{50}}
Using this condition in the above equation, we will get the following:
(101)50(99)50>(100)50{{\left( 101 \right)}^{50}}-{{\left( 99 \right)}^{50}}>{{\left( 100 \right)}^{50}}
Or, (101)50>(100)50+(99)50{{\left( 101 \right)}^{50}}>{{\left( 100 \right)}^{50}}+{{\left( 99 \right)}^{50}}
Or, (100)50+(99)50<(101)50{{\left( 100 \right)}^{50}}+{{\left( 99 \right)}^{50}}<{{\left( 101 \right)}^{50}} .
Hence, option (a) is the correct answer.

Note: It is important to understand the fact that alternate terms in the expansions of (101)50{{\left( 101 \right)}^{50}} and (99)50{{\left( 99 \right)}^{50}} will be of opposite sign. So, if we subtract these expansions, these alternate terms will get cancelled out. Use this property to arrive at the final answer.