Question
Question: Find whether \({{\left( 100 \right)}^{50}}+{{\left( 99 \right)}^{50}}\) is: (a) \(<{{\left( 101 \...
Find whether (100)50+(99)50 is:
(a) <(101)50
(b) <(101)
(c) >(101)50
(d) >(101)
Solution
Hint: Use binomial expansion to expand (101)50 and (99)50 . Then subtract the two expressions obtained to get a new expression. Use the elements of the new expression to arrive at a relation between (100)50+(99)50 and (101)50 .
Complete step-by-step answer:
We need to find the relation between (100)50+(99)50 and (101)50 .
We will use binomial expansion to solve this question.
First, let us define binomial expansion.
The binomial expansion (or binomial theorem) describes the algebraic expansion of powers of a binomial. According to the theorem, it is possible to expand (x+y)n into a sum involving terms of the form axbyc , where the exponents b and c are non negative integers with b + c = n, and the coefficient a of each term is a specific positive integer depending on n and b.
Binomial expansion gives us the formula:
(a+b)n=0nC⋅anb0+1nC⋅an−1b1+...+nnC⋅a0bn
Let us first evaluate (101)50
(101)50=(100+1)50
(101)50=10050+150C⋅10049+250C⋅10048+...+1 (101)50=(100+1)50(101)50=10050+150C⋅10049+250C⋅10048+...+1 …(1)
Now, we will evaluate (99)50
(99)50=(100−1)50
(99)50=10050−150C⋅10049+250C⋅10048−...+1 …(2)
We will now subtract equation (2) from equation (1) .
(101)50−(99)50=(10050+150C⋅10049+250C⋅10048+...+1)−(10050−150C⋅10049+250C⋅10048−...+1) (101)50−(99)50=(10050+150C⋅10049+250C⋅10048+...+1)−10050+150C⋅10049−250C⋅10048+...−1 (101)50−(99)50=2×(150C⋅10049+350C⋅10047+...)
(101)50−(99)50=2×150C⋅10049+2×(350C⋅10047+550C⋅10045+...)
As we know that 150C=50 . Substituting this in above equation, we will get the following:
(101)50−(99)50=2×50×10049+2×(350C⋅10047+550C⋅10045+...)
As 2×50=100 . Substituting this in above equation, we will get the following:
(101)50−(99)50=100×10049+2×(350C⋅10047+550C⋅10045+...)
(101)50−(99)50=10050+2×(350C⋅10047+550C⋅10045+...)
Now, let P=2×(350C⋅10047+550C⋅10045+...) , where P is some positive number.
Substituting this in above equation, we will get the following:
(101)50−(99)50=10050+P
Also, we know that:
10050+P>10050
Using this condition in the above equation, we will get the following:
(101)50−(99)50>(100)50
Or, (101)50>(100)50+(99)50
Or, (100)50+(99)50<(101)50 .
Hence, option (a) is the correct answer.
Note: It is important to understand the fact that alternate terms in the expansions of (101)50 and (99)50 will be of opposite sign. So, if we subtract these expansions, these alternate terms will get cancelled out. Use this property to arrive at the final answer.