Solveeit Logo

Question

Question: Find vertex of parabola: $x^2+7x-2$...

Find vertex of parabola: x2+7x2x^2+7x-2

Answer

The vertex is (72,574)\left(-\frac{7}{2}, -\frac{57}{4}\right).

Explanation

Solution

Assume the parabola equation is y=x2+7x2y = x^2+7x-2. For a parabola in the form y=ax2+bx+cy = ax^2+bx+c, the x-coordinate of the vertex is xv=b2ax_v = \frac{-b}{2a}. Here, a=1a=1 and b=7b=7. Thus, xv=72(1)=72x_v = \frac{-7}{2(1)} = -\frac{7}{2}. Substitute this xvx_v back into the equation to find yvy_v: yv=(72)2+7(72)2=4944922=499884=574y_v = \left(-\frac{7}{2}\right)^2 + 7\left(-\frac{7}{2}\right) - 2 = \frac{49}{4} - \frac{49}{2} - 2 = \frac{49-98-8}{4} = -\frac{57}{4}. The vertex is (72,574)\left(-\frac{7}{2}, -\frac{57}{4}\right).