Solveeit Logo

Question

Mathematics Question on Vector Algebra

Find x|\vec{x}|,if for a unit vector a,(xa).(x+a)=12\vec{a},(\vec{x}-\vec{a}).(\vec{x}+\vec{a})=12

Answer

The correct answer is: x=13|\vec{x}|=\sqrt{13}
(xa).(x+a)=12(\vec{x}-\vec{a}).(\vec{x}+\vec{a})=12
x.x+x.aa.xa.a=12⇒\vec{x}.\vec{x}→+\vec{x}.\vec{a}-\vec{a}.\vec{x}-\vec{a}.\vec{a}=12
x2a2=12⇒|\vec{x}|^2-|\vec{a}|^2=12
x21=12[a=1⇒|\vec{x}|^2-1=12 \,\,\,\,[|\vec{a}|=1as a\vec{a}is a unit vector]
x2=13⇒|\vec{x}|^2=13
x=13∴|\vec{x}|=\sqrt{13}