Solveeit Logo

Question

Mathematics Question on Vector Algebra

Find a|\vec{a}| and b|\vec{b}| ,if (a+b).(ab)=8(\vec{a}+\vec{b}).(\vec{a}-\vec{b})=8 and a=8b.|\vec{a}|=8|\vec{b}|.

Answer

The correct answer is: 16237.\frac{16\sqrt{2}}{3\sqrt{7}}.
(a.b).(ab)=8(\vec{a}.\vec{b}).(\vec{a}-\vec{b})=8
a.aa.b+b.ab.b=8⇒\vec{a}.\vec{a}-\vec{a}.\vec{b}+\vec{b}.\vec{a}-\vec{b}.\vec{b}=8
a2b2=8⇒|\vec{a}|^2-|\vec{b}|^2=8
(8b)2b2=8[a=8b]⇒(8|\vec{b}|)^2-|\vec{b}|^2=8 [|\vec{a}|=8|\vec{b}|]
64b2b2=8⇒64|\vec{b}|^2-|\vec{b}|^2=8
63b2=8⇒63|\vec{b}|^2=8
b2=863⇒|\vec{b}|^2=\frac{8}{63}
b=863⇒|\vec{b}|^=\sqrt{\frac{8}{63}} [Magnitude of a vector is non-negative]
b=2237⇒|\vec{b}|=\frac{2\sqrt{2}}{3\sqrt{7}}
a=8b=8×2237=16237.⇒|\vec{a}|=8|\vec{b}|=\frac{8×2\sqrt{2}}{3\sqrt{7}}=\frac{16\sqrt{2}}{3\sqrt{7}}.