Solveeit Logo

Question

Mathematics Question on Determinants

Find values of k if area of triangle is 4 square units and vertices are(i)(k,0),(4,0),(0,2)(ii)(2,0),(0,4),(0,k)(i)(k,0),(4,0),(0,2)(ii)(−2,0),(0,4),(0,k)

Answer

We know that the area of a triangle whose vertices are (x1,y1),(x2,y2),(x_1, y_1), (x_2, y_2), and (x3,y3)(x_3, y_3) is the absolute value of the determinant ()(∆), where
=12[x1y11 x2y21 x3y31]∆=\frac{1}{2}\begin{bmatrix}x_1&y_1&1\\\ x_2&y_2&1\\\ x_3&y_3&1\end{bmatrix}
It is given that the area of triangle is 4 square units.
=±4.∴∆ = ± 4.
(i) The area of the triangle with vertices (k,0),(4,0),(0,2)(k, 0), (4, 0), (0, 2) is given by the relation,
=12[k01 401 021]∆=\frac{1}{2}\begin{bmatrix}k&0&1\\\ 4&0&1\\\ 0&2&1\end{bmatrix}
=12[k(02)0(40)+(80)]=\frac{1}{2}[k(0-2)-0(4-0)+(8-0)]
=12[2k+8]=k+4=\frac{1}{2}[-2k+8]=-k+4
k+4=±4∴−k + 4 = ± 4
When k+4=4,k=8.−k + 4 = − 4, k = 8.
When k+4=4,k=0.−k + 4 = 4, k = 0.
Hence, k=0,8.k = 0, 8.
(ii) The area of the triangle with vertices (2,0),(0,4),(0,k)(−2, 0), (0, 4), (0, k) is given by the relation,
=12[201 041 0k1]∆=\frac{1}{2}\begin{bmatrix}-2&0&1\\\ 0&4&1\\\ 0&k&1\end{bmatrix}
=12[2(4k)]=\frac{1}{2}[-2(4-k)]
=k4=k-4
k4=±4∴k−4=±4
When k4=4,k=0k − 4 = − 4, k = 0.
When k4=4,k=8.k − 4 = 4, k = 8.
Hence, k=0,8.k = 0, 8.