Solveeit Logo

Question

Question: Find value of \(\int {\dfrac{{dx}}{{9 + 16{{\sin }^2}x}}} \) is equal to a.\(\dfrac{1}{3}{\tan ^{...

Find value of dx9+16sin2x\int {\dfrac{{dx}}{{9 + 16{{\sin }^2}x}}} is equal to
a.13tan1(3tanx5)+c\dfrac{1}{3}{\tan ^{ - 1}}\left( {\dfrac{{3\tan x}}{5}} \right) + c
b.15tan1(tanx15)+c\dfrac{1}{5}{\tan ^{ - 1}}\left( {\dfrac{{\tan x}}{{15}}} \right) + c
c.115tan1(tanx5)+c\dfrac{1}{{15}}{\tan ^{ - 1}}\left( {\dfrac{{\tan x}}{5}} \right) + c
d.115tan1(5tanx3)+c\dfrac{1}{{15}}{\tan ^{ - 1}}\left( {\dfrac{{5\tan x}}{3}} \right) + c

Explanation

Solution

We are given an integral and first using the identity cos2x+sin2x=1{\cos ^2}x + {\sin ^2}x = 1 we get dx9cos2x+25sin2x\int {\dfrac{{dx}}{{9{{\cos }^2}x + 25{{\sin }^2}x}}} and further taking cos2x{\cos ^2}x common in the denominator and simplifying we a new integrand and using the method of substitution we can solve the integral which is of the form dxa2+x2=1atan1xa+c\int {\dfrac{{dx}}{{{a^2} + {x^2}}}} = \dfrac{1}{a}{\tan ^{ - 1}}\dfrac{x}{a} + c

Complete step-by-step answer:
Here we need to find the value of dx9+16sin2x\int {\dfrac{{dx}}{{9 + 16{{\sin }^2}x}}}
We know that cos2x+sin2x=1{\cos ^2}x + {\sin ^2}x = 1
Implying this we get
dx9(cos2x+sin2x)+16sin2x dx9cos2x+9sin2x+16sin2x dx9cos2x+25sin2x  \Rightarrow \int {\dfrac{{dx}}{{9\left( {{{\cos }^2}x + {{\sin }^2}x} \right) + 16{{\sin }^2}x}}} \\\ \Rightarrow \int {\dfrac{{dx}}{{9{{\cos }^2}x + 9{{\sin }^2}x + 16{{\sin }^2}x}}} \\\ \Rightarrow \int {\dfrac{{dx}}{{9{{\cos }^2}x + 25{{\sin }^2}x}}} \\\
Now lets take cos2x{\cos ^2}x common in the denominator
dxcos2x(9+25sin2xcos2x) sec2xdx(9+25tan2x)  \Rightarrow \int {\dfrac{{dx}}{{{{\cos }^2}x\left( {9 + \dfrac{{25{{\sin }^2}x}}{{{{\cos }^2}x}}} \right)}}} \\\ \Rightarrow \int {\dfrac{{{{\sec }^2}xdx}}{{\left( {9 + 25{{\tan }^2}x} \right)}}} \\\
The above is given by 1cos2x=sec2x\dfrac{1}{{{{\cos }^2}x}} = {\sec ^2}x and sin2xcos2x=tan2x\dfrac{{{{\sin }^2}x}}{{{{\cos }^2}x}} = {\tan ^2}x
Let it be equation (1)
Now let's solve this by substitution method
Let's take tan x = t
sec2xdx=dt\Rightarrow {\sec ^2}xdx = dt
Applying this in equation (1)
dt(9+25t2) dt(32+(5t)2)   \Rightarrow \int {\dfrac{{dt}}{{\left( {9 + 25{\operatorname{t} ^2}} \right)}}} \\\ \Rightarrow \int {\dfrac{{dt}}{{\left( {{3^2} + {{(5\operatorname{t} )}^2}} \right)}}} \\\ \\\
This is of the form dxa2+x2\int {\dfrac{{dx}}{{{a^2} + {x^2}}}}
We know that dxa2+x2=1atan1xa+c\int {\dfrac{{dx}}{{{a^2} + {x^2}}}} = \dfrac{1}{a}{\tan ^{ - 1}}\dfrac{x}{a} + c
Here a = 3 and x = 5t
Therefore
dt(32+(5t)2)=13tan15t3+c   \Rightarrow \int {\dfrac{{dt}}{{\left( {{3^2} + {{(5\operatorname{t} )}^2}} \right)}}} = \dfrac{1}{3}{\tan ^{ - 1}}\dfrac{{5t}}{3} + c \\\ \\\
Substituting t = tan x
dt(32+(5t)2)=13tan1(5tanx3)+c   \Rightarrow \int {\dfrac{{dt}}{{\left( {{3^2} + {{(5\operatorname{t} )}^2}} \right)}}} = \dfrac{1}{3}{\tan ^{ - 1}}\left( {\dfrac{{5\tan x}}{3}} \right) + c \\\ \\\
None of the options are correct.

Additional information: Integrals are used extensively in many areas of mathematics as well as in many other areas that rely on mathematics. For example, in probability theory, integrals are used to determine the probability of some random variable falling within a certain range.
An integral is the reverse of a derivative. A derivative is the steepness (or "slope"), as the rate of change, of a curve. The word "integral" can also be used as an adjective meaning "related to integers”.

Note: Try to remember basic trigonometric identities and integration formula. Using trigonometric formulas reduces the equation and solve further to get an answer.