Solveeit Logo

Question

Question: Find \(\underset{x\to 0}{\mathop{\lim }}\,\left[ \dfrac{x}{\sin x} \right]+{{x}^{x}}\) where \(\left...

Find limx0[xsinx]+xx\underset{x\to 0}{\mathop{\lim }}\,\left[ \dfrac{x}{\sin x} \right]+{{x}^{x}} where []\left[ \cdot \right] is the G.I.F A.1 A.1
B.2C.0 C.0
D.1-1$$$$

Explanation

Solution

We find limit of the function [xsinx]\left[ \dfrac{x}{\sin x} \right] by observing the curves of x,sinxx,\sin x within the closest interval to 0 that is [π2,π2]\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right] where we get x<sinx,x<0x<\sin x,x<0 and x.sinx,x>0x.\sin x,x>0. We find the limit of other term by putting xx=exlnx{{x}^{x}}={{e}^{x\ln x}}.

Complete step-by-step solution:
We know that limiting value for any real valued single variable function f(x)f\left( x \right) when the variable xx approaches to real number aa in the domain f(x)f\left( x \right) is denoted by
limxaf(x)=L\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)=L
Here LL is called the limit of the function.
The limit LL exists for real valued single variable function f(x)f\left( x \right) at any point x=ax=a then if and only if Left hand limit(LHL)= right hand limit(RHL) at x=ax=a. In symbols,

& \text{LHL}=\text{RHL} \\\ & \Rightarrow \underset{x\to {{a}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,f\left( x \right) \\\ \end{aligned}$$ We know from the laws of limits for the limit for two real valued functions $f\left( x \right)$ and $g\left( x \right)$ at point $x=a$ for both functions then by law of addition in limits $$\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)+\underset{x\to a}{\mathop{\lim }}\,g\left( x \right)=\underset{x\to a}{\mathop{\lim }}\,\left( f\left( x \right)+g\left( x \right) \right)$$ The given function to evaluate limit is . $\underset{x\to 0}{\mathop{\lim }}\,\left[ \dfrac{x}{\sin x} \right]+{{x}^{x}}$ Where $\left[ \cdot \right]$ is the greatest integer function which returns the greatest integer smaller than or equal to that number. In symbols if $x\in \left[ m,n \right]$ where $ m < n $ are integers, then We can use the law of addition to separate the limits and get, $$\underset{x\to 0}{\mathop{\lim }}\,\left[ \dfrac{x}{\sin x} \right]+{{x}^{x}}=\underset{x\to 0}{\mathop{\lim }}\,\left[ \dfrac{x}{\sin x} \right]+\underset{x\to 0}{\mathop{\lim }}\,{{x}^{x}}....(1) $$ Let us investigate the first limit. We know that $x$ is in radian and we observe the closest interval to 0 where the function starts approaching without increasing or decreasing that is $\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]=\left[ \dfrac{-3.14}{2},\dfrac{3.14}{2} \right]=\left[ -1.57,1.57 \right]$. We also know that range of $\sin x$ is $-1\le \sin x\le 1$. We now observe the curves of $\sin x$ and $x$ within the interval $\left[ -1.57,1.57 \right]$. ![](https://www.vedantu.com/question-sets/1a1fe08d-7a5f-4d34-b575-9ac2b598ea661844553462835845263.png) Let us find the left hand limit $\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\left[ \dfrac{x}{\sin x} \right]=\underset{x\to 0}{\mathop{\lim }}\,\left[ \dfrac{-x}{\sin \left( -x \right)} \right]$.When we see $x$ approaches to 0 from the left we have $$x<\sin x\Rightarrow -x>\sin \left( -x \right)$$ We see that from the left all the values of $x,\sin x$ are negative and negative of negative is positive. So now we divide the positive value and get. $$x<\sin x\Rightarrow -x>\sin \left( -x \right)\Rightarrow \dfrac{-x}{\sin \left( -x \right)}>1$$. Then we have $$\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\left[ \dfrac{x}{\sin x} \right]=\underset{x\to 0}{\mathop{\lim }}\,\left[ \dfrac{-x}{\sin \left( -x \right)} \right]=1$$ We can verify the values at two points of the interval from the left $\left[ \dfrac{-1.57}{\sin \left( -1.57 \right)} \right]=\left[ \dfrac{-1.57}{-1} \right]=1$ and $\left[ \dfrac{-0.01}{\sin \left( -0.01 \right)} \right]=\left[ \dfrac{-0.01}{-0.009} \right]=\left[ 1.11 \right]=1$$$$$ We can similarly find the right hand limit when $x$ approaches 0 from the right where $x>\sin x\Rightarrow \dfrac{x}{\sin x}>1$. Then we have $$\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\left[ \dfrac{x}{\sin x} \right]=1$$ We can verify the values at two points of the interval from the right$\left[ \dfrac{1.57}{\sin \left( 1.57 \right)} \right]=\left[ \dfrac{1.57}{1} \right]=1$ and $\left[ \dfrac{0.01}{\sin \left( 0.01 \right)} \right]=\left[ \dfrac{0.01}{0.009} \right]=\left[ 1.11 \right]=1$$$$$ So the left hand limit is same as right hand limit and hence limit exists and the value is $\underset{x\to 0}{\mathop{\lim }}\,\left[ \dfrac{x}{\sin x} \right]=1$ We find the limit of the other term in equation (1) $$\underset{x\to 0}{\mathop{\lim }}\,{{x}^{x}}=\underset{x\to 0}{\mathop{\lim }}\,{{e}^{x\ln x}}=1$$ So the we get from equation(1) $$\underset{x\to 0}{\mathop{\lim }}\,\left[ \dfrac{x}{\sin x} \right]+{{x}^{x}}=\underset{x\to 0}{\mathop{\lim }}\,\left[ \dfrac{x}{\sin x} \right]+\underset{x\to 0}{\mathop{\lim }}\,{{x}^{x}}=1+1=2$$ So the correct choice is B.$$$$ **Note:** We can alternatively find the limit of $\underset{x\to 0}{\mathop{\lim }}\,\left[ \dfrac{x}{\sin x} \right]$ by replacing the denominator $\sin x$ with the sine series $\sin x=x-\dfrac{{{x}^{3}}}{3!}+\dfrac{{{x}^{5}}}{5!}+...$ . Then the term $x$ will cancel out in numerator and denominator when we take $x$ common in the sine series.