Question
Mathematics Question on Applications of Derivatives
Find two positive numbers xandy such that their sum is 35 and the product x2y5 is a maximum
Let one number be x. Then, the other number is y=(35−x).
Letp(x)=x2y5.Then, we have:
p(x)=x2(35−x)5
p′(x)=2x(35−x)5−5x2(35−x)4
=x(35−x)4[2(35−x)−5x]
=x(35−x)4(70−7x)
=7x(35−x)4(10−x)
And.p′′(x)=7(35−x)4(10−x)+7x[−35−x)4−4(35−x)3(10−x)]
=7(35−x)4(10−x)−7x(35−x)4−28x(35−x)3(10−x)
=7(35−x)3[(35−x)(10−x)−x(35−x)−4x(10−x)]
=7(35−x)3[350−45x+x2−35x+x2−40x+4x2]
=7(35−x)3(6x2−120x+350)
Now,p(x)=0=x=0,x=35,x=10
When x = 35,$$ f'(x)=f(x)=0 and y=35−35=0. This will make the productx2y5 equal to 0.
When x=0,y=35−0=35and the product x2y5 will be 0.
∴ x=0andx=35 cannot be the possible values of x. When x=10, we have:
P"(x)=7(35−10)3(6×100−120×10+350)
=7(25)3(−250)<0
∴ By second derivative test, P(x) will be the maximum when x=10 and y=35−10=25. Hence, the required numbers are 10and25.