Solveeit Logo

Question

Mathematics Question on Applications of Derivatives

Find two positive numbers x  and  yx \space and\space y such that their sum is 3535 and the product x2y5x^{2} y^{5} is a maximum

Answer

Let one number be xx. Then, the other number is y=(35x)y = (35 − x).

Letp(x)=x2y5 p(x)=x^{2}y^{5}.Then, we have:

p(x)=x2(35x)5p(x)=x^{2}(35-x)^{5}

p(x)=2x(35x)55x2(35x)4p'(x)=2x(35-x)^{5}-5x^{2}(35-x)^{4}

=x(35x)4[2(35x)5x]=x(35-x)^{4}[2(35-x)-5x]

=x(35x)4(707x)=x(35-x)^{4}(70-7x)

=7x(35x)4(10x)=7x(35-x)^{4}(10-x)

And.p(x)=7(35x)4(10x)+7x[35x)44(35x)3(10x)].p''(x)=7(35-x)^{4}(10-x)+7x[-35-x)^{4}-4(35-x)^{3}(10-x)]

=7(35x)4(10x)7x(35x)428x(35x)3(10x)=7(35-x)^{4}(10-x)-7x(35-x)^{4}-28x(35-x)^{3}(10-x)

=7(35x)3[(35x)(10x)x(35x)4x(10x)]=7(35-x)^{3}[(35-x)(10-x)-x(35-x)-4x(10-x)]

=7(35x)3[35045x+x235x+x240x+4x2]=7(35-x)^{3}[350-45x+x^{2}-35x+x^{2}-40x+4x^{2}]

=7(35x)3(6x2120x+350)=7(35-x)^{3}(6x^{2}-120x+350)

Now,p(x)=0=x=0,x=35,x=10p(x)=0=x=0,x=35,x=10

When x = 35,$$ f'(x)=f(x)=0 andand y=3535=0y = 35 − 35 = 0. This will make the productx2y5 x^{2} y^{5} equal to 00.

When x=0,y=350=35x = 0, y = 35 − 0 = 35 and the product x2y5 x^{2} y^{5} will be 00.

x=0  and  x=35x = 0 \space and \space x = 35 cannot be the possible values of x. When x=10x = 10, we have:
P"(x)=7(3510)3(6×100120×10+350)P"(x)=7(35-10)^{3}(6\times 100-120\times10+350)
=7(25)3(250)<0=7(25)^{3}(-250)<0

∴ By second derivative test, P(x)P(x) will be the maximum when x=10x = 10 and y=3510=25y = 35 − 10 = 25. Hence, the required numbers are 10  and  2510 \space and \space 25.