Question
Mathematics Question on Applications of Derivatives
Find two positive numbers xandy such that x+y=60 and xy3 is maximum.
Answer
The two numbers are xandy such thatx+y=60.
∴y=60−x
Letf(x)=xy3.
f(x)=x(60−x)3
f′(x)=(60−x)3
f′(60−x)2[60−x−3x]
=(60−x)2(60−4x)
And,f′′(x)=−2(60−x)−4(60−x)2
=−2(60−x)[60−4x+2(60−x)]
=−2(60−x)(180−6x)
=−12(60−x)(30−x)
Now,f′(x)=0=x=60orx=15
Whenx=60,f′′(x)=0.
Whenx=15,f′′(x)=−12(60−15)(30−15)=−12×45×15<0.
∴By second derivative test,x=15 is a point of local maxima off.
Thus, function xy3 is maximum when x=15 and y=60−15=45. Hence, the required numbers are 15and45.