Solveeit Logo

Question

Mathematics Question on Applications of Derivatives

Find two positive numbers x  and  yx \space and\space y such that x+y=60x+y=60 and xy3xy^{3} is maximum.

Answer

The two numbers are x  and  yx \space and\space y such thatx+y=60.x+y=60.

y=60x∴ y= 60-x

Letf(x)=xy3.Let f(x) = xy^{3}.

f(x)=x(60x)3f(x)= x(60-x)^{3}

f(x)=(60x)3f'(x)=(60-x)^{3}

f(60x)2[60x3x]f'(60-x)^{2}[60-x-3x]

=(60x)2(604x)=(60-x)^{2}(60-4x)

And,f(x)=2(60x)4(60x)2f''(x)=-2(60-x)-4(60-x)^{2}

=2(60x)[604x+2(60x)]=-2(60-x)[60-4x+2(60-x)]

=2(60x)(1806x)=-2(60-x)(180-6x)

=12(60x)(30x)=-12(60-x)(30-x)

Now,f(x)=0=x=60  or  x=15,f'(x)=0=x=60 \space or\space x=15

When  x=60,f(x)=0.When \space x=60,f''(x)=0.

When  x=15,f(x)=12(6015)(3015)=12×45×15<0.When\space x=15,f''(x)=-12(60-15)(30-15)=-12\times45\times15<0.

∴By second derivative test,x=15x = 15 is a point of local maxima off. f.

Thus, function xy3xy^{3} is maximum when x=15x = 15 and y=6015=45y = 60−15=45. Hence, the required numbers are 15  and  45.15 \space and \space45.