Question
Question: Find those values of \[c\] for which the given equations are consistent. \[ 2x + 3y = 3 \\\ ...
Find those values of c for which the given equations are consistent.
2x+3y=3 (c+2)x+(c+4)y=c+6 (c+2)2x+(c+4)2y=(c+6)2Also solve the above equations for these values of c.
Solution
Hint : Here, in the question, we have been given a system of linear equations having two variables and one unknown constant c. And we are asked to find the values of c for which the given system is consistent and also the solution of the equations. We will use the determinant method to find the values of c and then solve the equation by elimination method.
Complete step-by-step answer :
Given system of equations:
Now, we know for any system of equations to be consistent, the first condition is that the determinant of the coefficients and coefficients should be equal to zero. Therefore,
2&3&3 \\\ {c + 2}&{c + 4}&{c + 6} \\\ {{{\left( {c + 2} \right)}^2}}&{{{\left( {c + 4} \right)}^2}}&{{{\left( {c + 6} \right)}^2}} \end{array}} \right| = 0$$ Applying $${C_1} \to {C_1} - {C_3}$$ and $${C_2} \to {C_2} - {C_3}$$, we get $$\left| {\begin{array}{*{20}{c}} { - 1}&0&3 \\\ { - 4}&{ - 2}&{c + 6} \\\ { - 8c - 32}&{ - 4c - 20}&{{{\left( {c + 6} \right)}^2}} \end{array}} \right| = 0$$ Now, we know if we multiply all elements of a row or a column by any constant $$p$$, it results $$p$$ times in value of the determinant. Therefore, Applying $${C_1} \to \left( { - 1} \right){C_1}$$ and $${C_2} \to \left( { - 1} \right){C_2}$$ to determinant, we get, $$\left| {\begin{array}{*{20}{c}} 1&0&3 \\\ 4&2&{c + 6} \\\ {8c + 32}&{4c + 20}&{{{\left( {c + 6} \right)}^2}} \end{array}} \right| = 0$$ Applying $${C_1} \to {C_1} - 2{C_2}$$, we get $$\left| {\begin{array}{*{20}{c}} 1&0&3 \\\ 0&2&{c + 6} \\\ { - 8}&{4c + 20}&{{{\left( {c + 6} \right)}^2}} \end{array}} \right| = 0$$ Applying $${C_3} \to {C_3} - 3{C_1}$$, we get\left| {\begin{array}{*{20}{c}}
1&0&0 \\
0&2&{c + 6} \\
{ - 8}&{4c + 20}&{{{\left( {c + 6} \right)}^2} + 24}
\end{array}} \right| = 0 \\
\Rightarrow 1\left[ {2\left( {{{\left( {c + 6} \right)}^2} + 24} \right) - \left( {c + 6} \right)\left( {4c + 20} \right)} \right] - 0 + 0 = 0 \\
2\left[ {\left( {{c^2} + 36 + 12c} \right) + 24} \right] - \left( {4{c^2} + 20c + 24c + 120} \right) = 0 \\
\Rightarrow 2{c^2} + 72 + 24c + 48 - 4{c^2} - 44c - 120 = 0 \\
\Rightarrow - 2{c^2} - 20c = 0 \\
{c^2} + 10c = 0 \\
\Rightarrow c\left( {c + 10} \right) = 0 \\
\Rightarrow c = 0;or;c = - 10 ;
2x + 3y = 3 \\
2x + 4y = 6 \\
4x + 16y = 36 \\
2x + ;3y = ;;3 \\
2x + ;4y = ;;6 \\
\underline { - ;;; - ;;;;;;; - ;;;} \\
;;;;;; - y = - 3 \\
\Rightarrow y = 3 \\
\Rightarrow x = - 3 ;
2x + 3y = 3 \\
- 8x - 6y = - 4; \Rightarrow 4x + 3y = 2 \\
64x + 36y = 16; \Rightarrow 16x + 9y = 4 ;
2x + ;3y = ;;3 \\
4x + 3y = ;;2 \\
\underline { - ;;; - ;;;;;;; - ;} \\
- 2x;;;;;; = ;;1 \\
\Rightarrow x = - \dfrac{1}{2} \\
\Rightarrow y = \dfrac{4}{3} ;