Question
Mathematics Question on Polynomials
Find the zeroes of the polynomial f(t)=t2+43t−15 and verify the relationship between the zeroes and the coefficients of the polynomial.
Step 1: Use the quadratic formula The polynomial is:
f(t)=t2+43t−15.
Using the quadratic formula:
t=2a−b±b2−4ac,where a=1, b=43, and c=−15. Substitute:
t=2(1)−43±(43)2−4(1)(−15)=2−43±48+60.
Simplify:
t=2−43±108=2−43±63.
Separate the roots:
t1=2−43+63=3,t2=2−43−63=−53.
Step 2: Verify the relationships
Sum of zeroes: t1+t2=3+(−53)=−43=−ab.
Product of zeroes: t1⋅t2=(3)(−53)=−15=ac.
Correct Answer: Zeroes are 3 and −53, and the relationships are verified.
Solution
Step 1: Use the quadratic formula The polynomial is:
f(t)=t2+43t−15.
Using the quadratic formula:
t=2a−b±b2−4ac,where a=1, b=43, and c=−15. Substitute:
t=2(1)−43±(43)2−4(1)(−15)=2−43±48+60.
Simplify:
t=2−43±108=2−43±63.
Separate the roots:
t1=2−43+63=3,t2=2−43−63=−53.
Step 2: Verify the relationships
Sum of zeroes: t1+t2=3+(−53)=−43=−ab.
Product of zeroes: t1⋅t2=(3)(−53)=−15=ac.
Correct Answer: Zeroes are 3 and −53, and the relationships are verified.