Solveeit Logo

Question

Mathematics Question on Polynomials

Find the zeroes of the polynomial f(t)=t2+43t15f(t) = t^2 + 4\sqrt{3}t - 15 and verify the relationship between the zeroes and the coefficients of the polynomial.

Answer

Step 1: Use the quadratic formula The polynomial is:
f(t)=t2+43t15.f(t) = t^2 + 4\sqrt{3}t - 15.
Using the quadratic formula:
t=b±b24ac2a,t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a},where a=1a = 1, b=43b = 4\sqrt{3}, and c=15c = -15. Substitute:
t=43±(43)24(1)(15)2(1)=43±48+602.t = \frac{-4\sqrt{3} \pm \sqrt{(4\sqrt{3})^2 - 4(1)(-15)}}{2(1)} = \frac{-4\sqrt{3} \pm \sqrt{48 + 60}}{2}.
Simplify:
t=43±1082=43±632.t = \frac{-4\sqrt{3} \pm \sqrt{108}}{2} = \frac{-4\sqrt{3} \pm 6\sqrt{3}}{2}.
Separate the roots:
t1=43+632=3,t2=43632=53.t_1 = \frac{-4\sqrt{3} + 6\sqrt{3}}{2} = \sqrt{3}, \quad t_2 = \frac{-4\sqrt{3} - 6\sqrt{3}}{2} = -5\sqrt{3}.
Step 2: Verify the relationships
Sum of zeroes: t1+t2=3+(53)=43=bat_1 + t_2 = \sqrt{3} + (-5\sqrt{3}) = -4\sqrt{3} = -\frac{b}{a}.
Product of zeroes: t1t2=(3)(53)=15=cat_1 \cdot t_2 = (\sqrt{3})(-5\sqrt{3}) = -15 = \frac{c}{a}.
Correct Answer: Zeroes are 3\sqrt{3} and 53-5\sqrt{3}, and the relationships are verified.

Explanation

Solution

Step 1: Use the quadratic formula The polynomial is:
f(t)=t2+43t15.f(t) = t^2 + 4\sqrt{3}t - 15.
Using the quadratic formula:
t=b±b24ac2a,t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a},where a=1a = 1, b=43b = 4\sqrt{3}, and c=15c = -15. Substitute:
t=43±(43)24(1)(15)2(1)=43±48+602.t = \frac{-4\sqrt{3} \pm \sqrt{(4\sqrt{3})^2 - 4(1)(-15)}}{2(1)} = \frac{-4\sqrt{3} \pm \sqrt{48 + 60}}{2}.
Simplify:
t=43±1082=43±632.t = \frac{-4\sqrt{3} \pm \sqrt{108}}{2} = \frac{-4\sqrt{3} \pm 6\sqrt{3}}{2}.
Separate the roots:
t1=43+632=3,t2=43632=53.t_1 = \frac{-4\sqrt{3} + 6\sqrt{3}}{2} = \sqrt{3}, \quad t_2 = \frac{-4\sqrt{3} - 6\sqrt{3}}{2} = -5\sqrt{3}.
Step 2: Verify the relationships
Sum of zeroes: t1+t2=3+(53)=43=bat_1 + t_2 = \sqrt{3} + (-5\sqrt{3}) = -4\sqrt{3} = -\frac{b}{a}.
Product of zeroes: t1t2=(3)(53)=15=cat_1 \cdot t_2 = (\sqrt{3})(-5\sqrt{3}) = -15 = \frac{c}{a}.
Correct Answer: Zeroes are 3\sqrt{3} and 53-5\sqrt{3}, and the relationships are verified.