Solveeit Logo

Question

Question: Find the vector equation of the plane passing through three points with position vectors \(\overset{...

Find the vector equation of the plane passing through three points with position vectors i+j2k\overset{\wedge }{\mathop{i}}\,+\overset{\wedge }{\mathop{j}}\,-2\overset{\wedge }{\mathop{k}}\,, 2ij+k2\overset{\wedge }{\mathop{i}}\,-\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\, and i+2j+k\overset{\wedge }{\mathop{i}}\,+2\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\,. Also find the coordinates of the point of intersection of this plane and the line r=3ijk+λ(2i2j+k)\overrightarrow{r}=3\overset{\wedge }{\mathop{i}}\,-\overset{\wedge }{\mathop{j}}\,-\overset{\wedge }{\mathop{k}}\,+\lambda \left( 2\overset{\wedge }{\mathop{i}}\,-2\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\, \right).

Explanation

Solution

We start solving this problem by considering the given position vectors as A,B,CA,B,Cand then we find AB\overrightarrow{AB} and BC\overrightarrow{BC} using the formula AB=BA\overrightarrow{AB}=\overrightarrow{B}-\overrightarrow{A}. Then we find the vector that is normal to the plane passing through A,B,CA,B,C using the formula n=AB×BC\overrightarrow{n}=\overrightarrow{AB}\times \overrightarrow{BC}. Then we find the equation of the required plane passing through any one of the given points and normal to the obtained vector using the formula (ra).n=0\left( \overrightarrow{r}-\overrightarrow{a} \right).\overrightarrow{n}=0. Then we solve the obtained vector equation and the given equation of line to get the value of λ\lambda . Hence, we get the coordinates of the required point.

Complete step by step answer:
Let us consider A=i+j2kA=\overset{\wedge }{\mathop{i}}\,+\overset{\wedge }{\mathop{j}}\,-2\overset{\wedge }{\mathop{k}}\,, B=2ij+kB=2\overset{\wedge }{\mathop{i}}\,-\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\,and C=i+2j+kC=\overset{\wedge }{\mathop{i}}\,+2\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\,.
Now, let us consider the formula for line joining A and B, AB=BA\overrightarrow{AB}=\overrightarrow{B}-\overrightarrow{A}
By applying the above formula, we get,
AB=(2ij+k)(i+j2k) AB=i2j+3k BC=(i+2j+k)(2ij+k) BC=i+3j \begin{aligned} & \Rightarrow \overrightarrow{AB}=\left( 2\overset{\wedge }{\mathop{i}}\,-\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\, \right)-\left( \overset{\wedge }{\mathop{i}}\,+\overset{\wedge }{\mathop{j}}\,-2\overset{\wedge }{\mathop{k}}\, \right) \\\ & \Rightarrow \overrightarrow{AB}=\overset{\wedge }{\mathop{i}}\,-2\overset{\wedge }{\mathop{j}}\,+3\overset{\wedge }{\mathop{k}}\, \\\ & \Rightarrow \overrightarrow{BC}=\left( \overset{\wedge }{\mathop{i}}\,+2\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\, \right)-\left( 2\overset{\wedge }{\mathop{i}}\,-\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\, \right) \\\ & \Rightarrow \overrightarrow{BC}=-\overset{\wedge }{\mathop{i}}\,+3\overset{\wedge }{\mathop{j}}\, \\\ \end{aligned}

Now, we find the vector normal to the plane passing through the points i+j2k\overset{\wedge }{\mathop{i}}\,+\overset{\wedge }{\mathop{j}}\,-2\overset{\wedge }{\mathop{k}}\,, 2ij+k2\overset{\wedge }{\mathop{i}}\,-\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\, and i+2j+k\overset{\wedge }{\mathop{i}}\,+2\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\,.
Let us consider the formula, vector normal to the plane passing through the points A,B,CA,B,C is n=AB×AC\overrightarrow{n}=\overrightarrow{AB}\times \overrightarrow{AC}
By applying the above formula, we get,
n=ijk 123 130  n=i(2(0)3(3))j(1(0)3(1))+k(1(3)(2)(1)) n=9i3j+k \begin{aligned} & \overrightarrow{n}=\left| \begin{matrix} \overset{\wedge }{\mathop{i}}\, & \overset{\wedge }{\mathop{j}}\, & \overset{\wedge }{\mathop{k}}\, \\\ 1 & -2 & 3 \\\ -1 & 3 & 0 \\\ \end{matrix} \right| \\\ & \overrightarrow{n}=\overset{\wedge }{\mathop{i}}\,\left( -2\left( 0 \right)-3\left( 3 \right) \right)-\overset{\wedge }{\mathop{j}}\,\left( 1\left( 0 \right)-3\left( -1 \right) \right)+\overset{\wedge }{\mathop{k}}\,\left( 1\left( 3 \right)-\left( -2 \right)\left( -1 \right) \right) \\\ & \overrightarrow{n}=-9\overset{\wedge }{\mathop{i}}\,-3\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\, \\\ \end{aligned}
Now, let us consider another formula, that is,
The equation of the plane passing through the point a\overrightarrow{a} and is normal to the vector n\overrightarrow{n} is given by (ra).n=0\left( \overrightarrow{r}-\overrightarrow{a} \right).\overrightarrow{n}=0
Now, by using the above formula, the equation of the plane passing through the point with position vector i+j2k\overset{\wedge }{\mathop{i}}\,+\overset{\wedge }{\mathop{j}}\,-2\overset{\wedge }{\mathop{k}}\, and normal to the vector 9i3j+k-9\overset{\wedge }{\mathop{i}}\,-3\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\,is given by
(ri+j2k).(9i3j+k)=0 r.(9i3j+k)(i+j2k).(9i3j+k)=0 r.(9i3j+k)=(i+j2k).(9i3j+k) r.(9i3j+k)=932 r.(9i3j+k)=14...............(1) \begin{aligned} & \left( \overrightarrow{r}-\overset{\wedge }{\mathop{i}}\,+\overset{\wedge }{\mathop{j}}\,-2\overset{\wedge }{\mathop{k}}\, \right).\left( -9\overset{\wedge }{\mathop{i}}\,-3\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\, \right)=0 \\\ & \Rightarrow \overrightarrow{r}.\left( -9\overset{\wedge }{\mathop{i}}\,-3\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\, \right)-\left( \overset{\wedge }{\mathop{i}}\,+\overset{\wedge }{\mathop{j}}\,-2\overset{\wedge }{\mathop{k}}\, \right).\left( -9\overset{\wedge }{\mathop{i}}\,-3\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\, \right)=0 \\\ & \Rightarrow \overrightarrow{r}.\left( -9\overset{\wedge }{\mathop{i}}\,-3\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\, \right)=\left( \overset{\wedge }{\mathop{i}}\,+\overset{\wedge }{\mathop{j}}\,-2\overset{\wedge }{\mathop{k}}\, \right).\left( -9\overset{\wedge }{\mathop{i}}\,-3\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\, \right) \\\ & \Rightarrow \overrightarrow{r}.\left( -9\overset{\wedge }{\mathop{i}}\,-3\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\, \right)=-9-3-2 \\\ & \Rightarrow \overrightarrow{r}.\left( -9\overset{\wedge }{\mathop{i}}\,-3\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\, \right)=-14...............\left( 1 \right) \\\ \end{aligned}
Now, consider the given equation of the line, r=3ijk+λ(2i2j+k)...............(2)\overrightarrow{r}=3\overset{\wedge }{\mathop{i}}\,-\overset{\wedge }{\mathop{j}}\,-\overset{\wedge }{\mathop{k}}\,+\lambda \left( 2\overset{\wedge }{\mathop{i}}\,-2\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\, \right)...............\left( 2 \right)
By solving the equations (1) and (2), we get,
(3ijk+λ(2i2j+k)).(9i3j+k)=14 ((3+2λ)i+(12λ)j+(1+λ)k).(9i3j+k)=14 2718λ+3+6λ1+λ=14 1111λ=0 11λ=11 λ=1111 λ=1 \begin{aligned} & \left( 3\overset{\wedge }{\mathop{i}}\,-\overset{\wedge }{\mathop{j}}\,-\overset{\wedge }{\mathop{k}}\,+\lambda \left( 2\overset{\wedge }{\mathop{i}}\,-2\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\, \right) \right).\left( -9\overset{\wedge }{\mathop{i}}\,-3\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\, \right)=-14 \\\ & \Rightarrow \left( \left( 3+2\lambda \right)\overset{\wedge }{\mathop{i}}\,+\left( -1-2\lambda \right)\overset{\wedge }{\mathop{j}}\,+\left( -1+\lambda \right)\overset{\wedge }{\mathop{k}}\, \right).\left( -9\overset{\wedge }{\mathop{i}}\,-3\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\, \right)=-14 \\\ & \Rightarrow -27-18\lambda +3+6\lambda -1+\lambda =-14 \\\ & \Rightarrow -11-11\lambda =0 \\\ & \Rightarrow -11\lambda =11 \\\ & \Rightarrow \lambda =-\dfrac{11}{11} \\\ & \Rightarrow \lambda =-1 \\\ \end{aligned}
Now, by substituting the value of λ\lambda in equation (2), we get,
r=3ijk+(1)(2i2j+k) r=3ijk2i+2jk r=i+j2k \begin{aligned} & \overrightarrow{r}=3\overset{\wedge }{\mathop{i}}\,-\overset{\wedge }{\mathop{j}}\,-\overset{\wedge }{\mathop{k}}\,+\left( -1 \right)\left( 2\overset{\wedge }{\mathop{i}}\,-2\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\, \right) \\\ & \Rightarrow \overrightarrow{r}=3\overset{\wedge }{\mathop{i}}\,-\overset{\wedge }{\mathop{j}}\,-\overset{\wedge }{\mathop{k}}\,-2\overset{\wedge }{\mathop{i}}\,+2\overset{\wedge }{\mathop{j}}\,-\overset{\wedge }{\mathop{k}}\, \\\ & \Rightarrow \overrightarrow{r}=\overset{\wedge }{\mathop{i}}\,+\overset{\wedge }{\mathop{j}}\,-2\overset{\wedge }{\mathop{k}}\, \\\ \end{aligned}

Hence, the coordinates of the required point are (1,1,2)\left( 1,1,-2 \right).

Note: There is a possibility of making a mistake by considering AB=AB\overrightarrow{AB}=\overrightarrow{A}-\overrightarrow{B} instead of AB=BA\overrightarrow{AB}=\overrightarrow{B}-\overrightarrow{A}, when finding the vector joining two vectors we should subtract the second one from the first. One might also make a mistake by considering n=AB×BC\overrightarrow{n}=\overrightarrow{AB}\times \overrightarrow{BC} instead of n=AB×AC\overrightarrow{n}=\overrightarrow{AB}\times \overrightarrow{AC} while solving the question. So, one should take care of which vector they are using while solving the problem.