Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

Find the vector equation of the plane passing through the intersection of the planes

r.(2i^+2j^3k^)=7\overrightarrow r.(2\hat i+2\hat j-3\hat k)=7,r.(2i^+5j^+3k^)=9\overrightarrow r.(2\hat i+5\hat j+3\hat k)=9 and through the point ( 2, 1, 3 ).

Answer

The equations of the planes are r.(2i^+2j^3k^)=7\overrightarrow r.(2\hat i+2\hat j-3\hat k)=7 and r.(2i^+5j^+3k^)=9\overrightarrow r.(2\hat i+5\hat j+3\hat k)=9

r.(2i^+2j^3k^)7=0\Rightarrow \overrightarrow r.(2\hat i+2\hat j-3\hat k)-7=0...(1)

r.(2i^+5j^+3k^)9=0\Rightarrow\overrightarrow r.(2\hat i+5\hat j+3\hat k)-9=0...(2)

The equation of any plane through the intersection of the planes given in equation (1) and (2) is given by,

[ r.(2i^+2j^3k^)=7\overrightarrow r.(2\hat i+2\hat j-3\hat k)=7 ]+λ\lambda [ r.(2i^+5j^+3k^)=9\overrightarrow r.(2\hat i+5\hat j+3\hat k)=9 ]=0, where λ\lambda\in R

r.[(2i^+2j^3k^)\overrightarrow r.[(2\hat i+2\hat j-3\hat k)+λ(2i^+5j^+3k^)]=9λ+7\lambda(2\hat i+5\hat j+3\hat k)]=9\lambda+7

r[(2+2λ)i^+(2+5λ)j^+(3λ3)k^]=9λ+7\overrightarrow r[(2+2\lambda)\hat i+(2+5\lambda)\hat j+(3\lambda-3)\hat k]=9\lambda+7 ...(3)

The plane passes through the point (2,1, 3).

Therefore, its position vector is given by, r.2i^+2j^+3k^\overrightarrow r.2\hat i+2\hat j+3\hat k

Substituting in equation (3), we obtain

(2\hat i+2\hat j-3\hat k).$$[(2+2\lambda)\hat i+(2+5\lambda)\hat j+(3\lambda-3)\hat k]=9\lambda+7

[(2+2λ)+(2+5λ)+(3λ3)]=9λ+7\Rightarrow[(2+2\lambda)+(2+5\lambda)+(3\lambda-3)]=9\lambda+7

\Rightarrow 18λ-3=9λ+7

\Rightarrow 9λ=10

\Rightarrow λ=109\frac{10}{9}

Substituting λ=109\lambda=\frac{10}{9} in equation(3), we obtain

r(389i^+689j^+39k^)=17\overrightarrow r\bigg(\frac{38}{9}\hat i+\frac{68}{9}\hat j+\frac{3}{9}\hat k\bigg)=17

r(38i^+68j^+3k^)=153\Rightarrow \overrightarrow r (38\hat i+68\hat j+3\hat k)=153

This is the vector equation of the required plane.