Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

Find the vector equation of the line passing through the point (1, 2, -4)and perpendicular to the two lines: x83=y+1916=z107\frac {x-8}{3}=\frac {y+19}{-16}=\frac {z-10}{7} and x153=y298=z55\frac {x-15}{3}=\frac {y-29}{8} =\frac {z-5}{-5}

Answer

Let the required line be parallel to the vector b\vec b given by,

b=b1i^+b2j^+b3k^\vec b=b_1\hat i+b_2\hat j +b_3 \hat k

The position vector of the point (1, 2, -4) is a=i^+2j^4k^\vec a= \hat i+2\hat j-4\hat k

The equation of the line passing through (1, 2,-4) and parallel to vector b\vec b is
r=a+λb\vec r=\vec a+λ\vec b

r\vec r = (i^+2j^4k^\hat i+2\hat j-4\hat k) + λ(b1i^+b2j^+b3k^b_1\hat i+b_2\hat j +b_3 \hat k) ...(1)

The equations of the lines are

x83=y+1916=z107\frac {x-8}{3}=\frac {y+19}{-16}=\frac {z-10}{7} ...(2)

x153=y298=z55\frac {x-15}{3}=\frac {y-29}{8}=\frac {z-5}{-5 } ...(3)

Line (1) and line (2) are perpendicular to each other.

∴3b1-16b2+7b3 = 0 ...(4)

Also, line (1) and line (3) are perpendicular to each other.

∴3b1+8b2-5b3 = 0 ...(5)

From equations (4) and (5), we obtain

b1(16)(5)8×7=b27×33(5)=b33×83(16)\frac {b_1}{(-16)(-5)-8×7}=\frac {b_2}{7×3-3(-5)} =\frac {b_3}{3×8-3(-16)}

b124=b236=b372\frac {b_1}{24}=\frac {b_2}{36}=\frac {b_3}{72}

b12=b23=b36\frac {b_1}{2}=\frac {b_2}{3}=\frac {b_3}{6}

∴Direction ratios of b\vec b are 2, 3 and 6.

b=2i^+3j^+6k^\vec b=2\hat i+3\hat j +6\hat k

Substituting b=2i^+3j^+6k^\vec b=2\hat i+3\hat j +6\hat k in equation(1), we obtain

r\vec r = (i^+2j^4k^)(\hat i+2\hat j-4\hat k) + λ(2i^+3j^+6k^)(2\hat i+3\hat j +6\hat k)

This is the equation of the required line.