Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

Find the vector equation of the line passing through(1, 2, 3)and parallel to the planes r.=(i^j^+2k^)=5\vec r.=(\hat i-\hat j+2\hat k)=5 and r.(3i^+j^+k^)=6\vec r.(3\hat i+\hat j+\hat k)=6.

Answer

Let the required line be parallel to vector b\vec b given by,
b=b1i^+b2j^+b3k^\vec b=b_1\hat i+b_2\hat j+b_3\hat k

The position vector of the point (1, 2, 3) is
a=i^+2j^+3k^\vec a=\hat i+2\hat j+3\hat k

The equation of line passing through (1, 2, 3) and parallel to b\vec b is given by,

r=a+λb\vec r=\vec a+λ\vec b

r=\vec r =(i^+2j^+3k^\hat i+2\hat j+3\hat k) + λ(b1i^+b2j^+b3k^b_1\hat i+b_2\hat j+b_3\hat k) ...(1)

The equations of the given planes are

r.(i^j^+2k^)=5\vec r.(\hat i-\hat j+2\hat k)=5 ...(2)

r.(3i^+j^+k^)=6\vec r.(3\hat i+\hat j+\hat k)=6 ...(3)

The line in equation (1) and plane in equation (2) are parallel.

Therefore, the normal to the plane of equation (2) and the given line are perpendicular.
(i^j^+2k^\hat i-\hat j+2\hat k) . λ(b1i^+b2j^+b3k^b_1\hat i+b_2\hat j+b_3\hat k) = 0
λ(b1b2+2b3)=0⇒λ(b_1-b_2+2b_3)=0
b1b2+2b3=0⇒b_1-b_2+2b_3=0 ...(4)

Similarly,
(3i^+j^+k^).λ(b1i^+b2j^+b3k^)=0(3\hat i+\hat j+\hat k).λ(b_1\hat i+b_2\hat j+b_3\hat k^)=0
λ(3b1+b2+b3)=0⇒λ(3b_1+b_2+b_3)=0
3b1+b2+b3=0⇒3b_ 1+b_2+b_3=0 ...(5)

From equation (4) and (5), we obtain
b1(1)×11×2\frac {b_1}{(-1)×1-1×2} = b22×31×1\frac {b_2}{2×3-1×1 }= b31×13(1)\frac {b_3}{1×1-3(-1)}

b13=b25=b34⇒\frac {b_1}{-3} =\frac {b_2}{5} =\frac {b_3}{4}

Therefore, the direction ratios of b\vec b are -3, 5 and 4.

b=b1i^+b2j^+b3k^∴b=b_1\hat i+b_2\hat j+b_3\hat k
b=3i^+5j^+4k^b =-3\hat i+5\hat j+4\hat k

Substituting the values of b\vec b in equation (1), we obtain
r=(i^+2j^+3k^)+λ(3i^+5j^+4k^)\vec r=(\hat i+2\hat j+3\hat k)+λ(-3\hat i+5\hat j+4\hat k)

This is the equation of the required line.