Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

Find the vector equation of a plane which is at a distance of 7 units from the origin and normal to the vector 3i^+5j^6k^.3\hat i+5\hat j-6\hat k.

Answer

The normal vector is,

n=3i^+5j^6k^.\overrightarrow n= 3\hat i+5\hat j-6\hat k.

n^=nn\hat n=\frac{\overrightarrow n}{\mid \overrightarrow n\mid}

=3i^+5j^6k^.(3)2+(5)2+(6)2\frac{3\hat i+5\hat j-6\hat k.}{\sqrt{(3)^2+(5)^2+(6)^2}}

=3i^+5j^6k^.70\frac{3\hat i+5\hat j-6\hat k.}{\sqrt 70}

It is known that the equation of the plane with position vector r\overrightarrow r is given by,

r.n^=d\overrightarrow r.\hat n=d
r^.(3i^+5j^6k^.70)=7\Rightarrow \hat r.\bigg(\frac{3\hat i+5\hat j-6\hat k.}{\sqrt {70}}\bigg)=7

This is the vector equation of the required plane.