Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

Find the vector and cartesian equation of the planes

(a) that passes through the point (1,0,-2)and the normal to the plane is i^+j^k^\hat i+\hat j-\hat k.

(b) that passes through the point(1,4,6)and the normal vector to the plane is i^2j^+k^\hat i-2\hat j+\hat k.

Answer

(a) The position vector of point (1,0,-2) is a=i^2k^\overrightarrow a=\hat i-2\hat k

The normal vector N→ perpendicular to the plane is N=i^+j^k^\overrightarrow N=\hat i+\hat j-\hat k

The vector equation of the plane is given by (ra\overrightarrow r-\overrightarrow a).N\overrightarrow N=0

[r(i^2k^)].(i^+j^k^)=0\Rightarrow [\overrightarrow r-(\hat i-2\hat k)].(\hat i+\hat j-\hat k)=0...(1)

r\overrightarrow r is the position vector of any point P(x,y,z) in the plane.

r=xi^+yj^+zk^\overrightarrow r=x\hat i+y\hat j+z\hat k

Therefore, equation(1) becomes

[(xi^+yj^+zk^)(x\hat i+y\hat j+z\hat k)-(i^2k^)].(i^+j^k^)=0(\hat i-2\hat k)].(\hat i+\hat j-\hat k)=0

[(x1)i^+yj^+(z+2)k^].(i^+j^k^)=0\Rightarrow [(x-1)\hat i+y\hat j+(z+2)\hat k].(\hat i+\hat j-\hat k)=0

\Rightarrow (x-1)+y-(z+2)=0

\Rightarrow x+y-z-3=0

\Rightarrow x+y-z=3

This is the cartesian equation of the required plane.


(b) The position vector of the point (1,4,6) is a=i^+4j^+6k^\overrightarrow a=\hat i+4\hat j+6\hat k

The normal vector N\overrightarrow N perpendicular to the plane is N=i^2j^+k^\overrightarrow N=\hat i-2\hat j+\hat k

The vector equation of the plane is given by (ra).N(\overrightarrow r-\overrightarrow a).\overrightarrow N =0

[r\Rightarrow [ \overrightarrow r-(i^+4j^+6k^\hat i+4\hat j+6\hat k)].(i^2j^+k^\hat i-2\hat j+\hat k)=0...(1)

r\overrightarrow r is the position vector of of any point P(x,y,z)in the plane.

r\overrightarrow r =xi^+yj^+zk^x\hat i+y\hat j+z\hat k

Therefore, equation(1) becomes

[(xi^+yj^+zk^x\hat i+y\hat j+z\hat k)-(i^+4j^+6k^\hat i+4\hat j+6\hat k)].(i^2j^+k^\hat i-2\hat j+\hat k)=0

[(x1)i^+(y4)j^+(z6)k^].(i^2j^+k^)=0\Rightarrow [(x-1)\hat i+(y-4)\hat j+(z-6)\hat k].(\hat i-2\hat j+\hat k)=0

\Rightarrow (x-1)-2(y-4)+(z-6)=0

\Rightarrow x-2y+z+1=0

This is the cartesian equation of the required plane.