Solveeit Logo

Question

Question: Find the vector and Cartesian equation in symmetric form of the line passing through the points \[\l...

Find the vector and Cartesian equation in symmetric form of the line passing through the points (2,0,3)\left( {2,0, - 3} \right) and (7,3,10)\left( {7,3, - 10} \right).

Explanation

Solution

Here, we will first calculate the direction ratios of the given line. Then, we will use the formula for vector equation and cartesian equation of a line, and substitute the values to find the vector and Cartesian equation in symmetric form of the line passing through the points (2,0,3)\left( {2,0, - 3} \right) and (7,3,10)\left( {7,3, - 10} \right).

Formula Used:
We will use the following formulas:
1. The direction ratios of a line segment joining the points (x1,y1,z1)\left( {{x_1},{y_1},{z_1}} \right) and (x2,y2,z2)\left( {{x_2},{y_2},{z_2}} \right) are given by x2x1{x_2} - {x_1}, y2y1{y_2} - {y_1}, and z2z1{z_2} - {z_1}.
2. The vector equation of a line joining the points (x1,y1,z1)\left( {{x_1},{y_1},{z_1}} \right) and (x2,y2,z2)\left( {{x_2},{y_2},{z_2}} \right) is given by r=a+λb\overrightarrow r = \overrightarrow a + \lambda \overrightarrow b , where a=x1i^+y1j^+z1k^\overrightarrow a = {x_1}\hat i + {y_1}\hat j + {z_1}\hat k, and b=ai^+bj^+ck^\overrightarrow b = a\hat i + b\hat j + c\hat k.
3. The Cartesian equation of a line joining the points (x1,y1,z1)\left( {{x_1},{y_1},{z_1}} \right) and (x2,y2,z2)\left( {{x_2},{y_2},{z_2}} \right) is given by xx1a=yy1b=zz1c\dfrac{{x - {x_1}}}{a} = \dfrac{{y - {y_1}}}{b} = \dfrac{{z - {z_1}}}{c}, where aa, bb, and cc are the direction ratios.

Complete step by step solution:
First, we will find the direction ratios of the line passing through the points (2,0,3)\left( {2,0, - 3} \right) and (7,3,10)\left( {7,3, - 10} \right).
Let the direction ratios of the line passing through the points (2,0,3)\left( {2,0, - 3} \right) and (7,3,10)\left( {7,3, - 10} \right) be aa, bb, and cc respectively.
The direction ratios of a line segment joining the points (x1,y1,z1)\left( {{x_1},{y_1},{z_1}} \right) and (x2,y2,z2)\left( {{x_2},{y_2},{z_2}} \right) are given by x2x1{x_2} - {x_1}, y2y1{y_2} - {y_1}, and z2z1{z_2} - {z_1}.
Substituting x1=2{x_1} = 2, y1=0{y_1} = 0, z1=3{z_1} = - 3, x2=7{x_2} = 7, y2=3{y_2} = 3, and z2=10{z_2} = - 10 in the formula for direction ratios, we get
x2x1=72=5{x_2} - {x_1} = 7 - 2 = 5
y2y1=30=3{y_2} - {y_1} = 3 - 0 = 3
z2z110(3)=10+3=7{z_2} - {z_1} - 10 - \left( { - 3} \right) = - 10 + 3 = - 7
Therefore, we get
a=5a = 5
b=3b = 3
c=7c = - 7
Now, we will find the vector equation of the line passing through the points (2,0,3)\left( {2,0, - 3} \right) and (7,3,10)\left( {7,3, - 10} \right).
The vector equation of a line joining the points (x1,y1,z1)\left( {{x_1},{y_1},{z_1}} \right) and (x2,y2,z2)\left( {{x_2},{y_2},{z_2}} \right) is given by r=a+λb\overrightarrow r = \overrightarrow a + \lambda \overrightarrow b , where a=x1i^+y1j^+z1k^\overrightarrow a = {x_1}\hat i + {y_1}\hat j + {z_1}\hat k, and b=ai^+bj^+ck^\overrightarrow b = a\hat i + b\hat j + c\hat k.
Substituting x1=2{x_1} = 2, y1=0{y_1} = 0, z1=3{z_1} = - 3, a=5a = 5, b=3b = 3, and c=7c = - 7 in the equations a=x1i^+y1j^+z1k^\overrightarrow a = {x_1}\hat i + {y_1}\hat j + {z_1}\hat k and b=ai^+bj^+ck^\overrightarrow b = a\hat i + b\hat j + c\hat k, we get
a=2i^+0j^3k^=2i^3k^\overrightarrow a = 2\hat i + 0\hat j - 3\hat k = 2\hat i - 3\hat k
b=5i^+3j^7k^\overrightarrow b = 5\hat i + 3\hat j - 7\hat k
Substituting a=2i^3k^\overrightarrow a = 2\hat i - 3\hat k and b=5i^+3j^7k^\overrightarrow b = 5\hat i + 3\hat j - 7\hat k in the vector equation of a line joining two points, we get
r=(2i^3k^)+λ(5i^+3j^7k^)\overrightarrow r = \left( {2\hat i - 3\hat k} \right) + \lambda \left( {5\hat i + 3\hat j - 7\hat k} \right)
Multiplying the terms using the distributive law of multiplication, we get
r=2i^3k^+5λi^+3λj^7λk^\Rightarrow \overrightarrow r = 2\hat i - 3\hat k + 5\lambda \hat i + 3\lambda \hat j - 7\lambda \hat k
Factoring the terms, we get
r=(2+5λ)i^+(3λ)j^(3+7λ)k^\Rightarrow \overrightarrow r = \left( {2 + 5\lambda } \right)\hat i + \left( {3\lambda } \right)\hat j - \left( {3 + 7\lambda } \right)\hat k
Thus, the vector equation of the given line is r=(2+5λ)i^+(3λ)j^(3+7λ)k^\overrightarrow r = \left( {2 + 5\lambda } \right)\hat i + \left( {3\lambda } \right)\hat j - \left( {3 + 7\lambda } \right)\hat k.
Now, we will find the Cartesian equation of the line passing through the points (2,0,3)\left( {2,0, - 3} \right) and (7,3,10)\left( {7,3, - 10} \right).
The Cartesian equation of a line joining the points (x1,y1,z1)\left( {{x_1},{y_1},{z_1}} \right) and (x2,y2,z2)\left( {{x_2},{y_2},{z_2}} \right) is given by xx1a=yy1b=zz1c\dfrac{{x - {x_1}}}{a} = \dfrac{{y - {y_1}}}{b} = \dfrac{{z - {z_1}}}{c}, where aa, bb, and cc are the direction ratios.
Substituting x1=2{x_1} = 2, y1=0{y_1} = 0, z1=3{z_1} = - 3, a=5a = 5, b=3b = 3, and c=7c = - 7 in the Cartesian equation of a line joining two points, we get
x25=y03=z(3)7\dfrac{{x - 2}}{5} = \dfrac{{y - 0}}{3} = \dfrac{{z - \left( { - 3} \right)}}{{ - 7}}
Simplifying the expression, we get
x25=y3=z+37\Rightarrow \dfrac{{x - 2}}{5} = \dfrac{y}{3} = \dfrac{{z + 3}}{{ - 7}}
Thus, the Cartesian equation of the given line is x25=y3=z+37\dfrac{{x - 2}}{5} = \dfrac{y}{3} = \dfrac{{z + 3}}{{ - 7}}.

Note:
We have used the distributive law of multiplication to multiply λ\lambda by (5i^+3j^7k^)\left( {5\hat i + 3\hat j - 7\hat k} \right). The distributive law of multiplication states that a(b+c+d)=ab+ac+ada\left( {b + c + d} \right) = a \cdot b + a \cdot c + a \cdot d.
We can also find the vector equation of a line joining the points (x1,y1,z1)\left( {{x_1},{y_1},{z_1}} \right) and (x2,y2,z2)\left( {{x_2},{y_2},{z_2}} \right) directly using the formula r=a+λ(ba)\overrightarrow r = \overrightarrow a + \lambda \left( {\overrightarrow b - \overrightarrow a } \right), where a=x1i^+y1j^+z1k^\overrightarrow a = {x_1}\hat i + {y_1}\hat j + {z_1}\hat k, b=x2i^+y2j^+z2k^\overrightarrow b = {x_2}\hat i + {y_2}\hat j + {z_2}\hat k, and λR\lambda \in R.
Similarly, we can also find the cartesian equation of a line joining the points (x1,y1,z1)\left( {{x_1},{y_1},{z_1}} \right) and (x2,y2,z2)\left( {{x_2},{y_2},{z_2}} \right) directly using the formula xx1x2x1=yy1y2y1=zz1z2z1\dfrac{{x - {x_1}}}{{{x_2} - {x_1}}} = \dfrac{{y - {y_1}}}{{{y_2} - {y_1}}} = \dfrac{{z - {z_1}}}{{{z_2} - {z_1}}}.