Solveeit Logo

Question

Mathematics Question on Variance and Standard Deviation

Find the variance of the data given below Occurance (xi)(x_i)Frequency (fi)(f_i)Freq (xi)\ast (x_i)(ximean)(x_i-mean)(ximean)2(x_i-mean)^2fi(ximean)2f_i(x_i-mean)^2
3.5310.5-3.5912.88738.661
4.5731.5-2.596.70746.952
5.5221211212.52855.609
6.560390-0.590.34820.876
7.585637.50.410.16814.298
8.5322721.411.98863.632
9.58762.415.80946.47
Total2171538.5--286.498
A

1.29

B

2.19

C

1.32

D

None of these

Answer

1.32

Explanation

Solution

Occurance (xi)(x_i)
| Frequency (fi)(f_i)
| Freq (xi)\ast (x_i)
| (ximean)(x_i-mean)
| (ximean)2(x_i-mean)^2
| fi(ximean)2f_i(x_i-mean)^2

---|---|---|---|---|---

3.5
| 3
| 10.5
| -3.59
| 12.887
| 38.661

4.5
| 7
| 31.5
| -2.59
| 6.707
| 46.952

5.5
| 22
| 121
| 121
| 2.528
| 55.609

6.5
| 60
| 390
| -0.59
| 0.348
| 20.876

7.5
| 85
| 637.5
| 0.41
| 0.168
| 14.298

8.5
| 32
| 272
| 1.41
| 1.988
| 63.632

9.5
| 8
| 76
| 2.41
| 5.809
| 46.47

Total
| 217

1538.5
-
286.498

σ2=fi(xixˉ)2fi=286.49217\sigma^{2} = \frac{\sum f_{i}\left(x_{i} -\bar{x}\right)^{2}}{\sum f_{i}} = \frac{286.49}{217}
=1.32= 1.32