Solveeit Logo

Question

Mathematics Question on Statistics

Find the variance of first 1010 multiples of 33.

A

70.1570.15

B

74.1574.15

C

73.1573.15

D

74.2574.25

Answer

74.2574.25

Explanation

Solution

Variance, σ2=xi2n(xˉ)2\sigma^{2} = \frac{\sum x^{2}_{i}}{n}-\left(\bar{x}\right)^{2} = \left\\{\frac{3^{2}+6^{2}+9^{2}+....+30^{2}}{10}-\left(16.5\right)^{2}\right\\} = \frac{3^{2}\times\left\\{1^{2}+2^{2}+3^{2}+... +10^{2}\right\\}}{10}-\left(16.5\right)^{2} =9×10×(10+1)(2×10+1)6×10(16.5)2= \frac{9\times 10\times \left(10+1\right)\left(2\times 10+1\right)}{6\times 10}-\left(16.5\right)^{2} =(9×10×11×216×1027225)= \left(\frac{9\times 10\times 11\times 21}{6\times 10}-272\cdot25\right) =(346.5272.25)=74.25= \left(346.5 - 272.25\right) = 74.25. \therefore Variance, σ2=74.25\sigma^{2} = 74.25.