Solveeit Logo

Question

Question: Find the values of x if \[4\sin x.\sin 2x.\sin 4x=\sin 3x\]....

Find the values of x if 4sinx.sin2x.sin4x=sin3x4\sin x.\sin 2x.\sin 4x=\sin 3x.

Explanation

Solution

Hint: Write 2x as (3xx)(3x-x) and 4x as (3x+x)(3x+x) . Use the formula sin3x=3sinx4sin3x\sin 3x=3\sin x-4{{\sin }^{3}}x and sin(A+B)sin(AB)=sin2Asin2B\sin (A+B)\sin (A-B)={{\sin }^{2}}A-{{\sin }^{2}}B and transform the given equation as 4sinx.sin(3xx).sin(3x+x)=sin3x4\sin x.\sin (3x-x).\sin (3x+x)=\sin 3x and solve them further. General solution of sinx=0\sin x=0 is nπn\pi and sinx=sin(±π3)\sin x=\sin \left( \pm \dfrac{\pi }{3} \right) is nπ±π3n\pi \pm \dfrac{\pi }{3} .

Complete step-by-step solution -
According to the question, we have the equation 4sinx.sin2x.sin4x=sin3x4\sin x.\sin 2x.\sin 4x=\sin 3x ……………(1)
Here, we have to find the values of x which satisfies the given equation.
First of all, we have to simplify the given equation.
We can write 2x as (3xx)(3x-x) and 4x as (3x+x)(3x+x) .
Now, replacing 2x by (3xx)(3x-x) and 4x by (3x+x)(3x+x) in the equation (1), we get
4sinx.sin2x.sin4x=sin3x4\sin x.\sin 2x.\sin 4x=\sin 3x
4sinx.sin(3xx)sin(3x+x)=sin3x\Rightarrow 4\sin x.\sin (3x-x)\sin (3x+x)=\sin 3x ………………………(2)
We know the formula, sin(A+B)sin(AB)=sin2Asin2B\sin (A+B)\sin (A-B)={{\sin }^{2}}A-{{\sin }^{2}}B .
Replacing A by 3x and B by x in the equation sin(A+B)sin(AB)=sin2Asin2B\sin (A+B)\sin (A-B)={{\sin }^{2}}A-{{\sin }^{2}}B , we get
sin(3xx)sin(3x+x)=sin23xsin2x\sin (3x-x)\sin (3x+x)={{\sin }^{2}}3x-{{\sin }^{2}}x ……………..(3)
Transforming equation (2) using equation (3), we get
4sinx(sin23xsin2x)=sin3x\Rightarrow 4\sin x({{\sin }^{2}}3x-{{\sin }^{2}}x)=\sin 3x…………..(4)
Now, expanding sin3x\sin 3x , we get
sin3x=sin(2x+x)=3sinx4sin3x\sin 3x=\sin (2x+x)=3\sin x-4{{\sin }^{3}}x ……………………(5)
Now, using equation (5) we can transform equation (4).

& \Rightarrow 4\sin x({{\sin }^{2}}3x-{{\sin }^{2}}x)=3\sin x-4{{\sin }^{3}}x \\\ & \Rightarrow 4\sin x.{{\sin }^{2}}3x-4{{\sin }^{3}}x=3\sin x-4{{\sin }^{3}}x \\\ & \Rightarrow 4\sin x.{{\sin }^{2}}3x-3\sin x=0 \\\ \end{aligned}$$ $$\Rightarrow \sin x(4{{\sin }^{2}}3x-3)=0$$ $$\sin x=0$$ or $$4{{\sin }^{2}}3x-3=0$$ . Now, taking $$\sin x=0$$ and we know that the general solution of $$\sin x=0$$ is $$n\pi $$. $$\begin{aligned} & \sin x=0 \\\ & \Rightarrow x=n\pi \\\ \end{aligned}$$ Now, taking $$4{{\sin }^{2}}3x-3=0$$ $$\begin{aligned} & 4{{\sin }^{2}}3x-3=0 \\\ & \Rightarrow \sin 3x=\pm \dfrac{\sqrt{3}}{2} \\\ \end{aligned}$$ We know that $$\sin \dfrac{\pi }{3}=\dfrac{\sqrt{3}}{2}$$ and $$\sin \left( -\dfrac{\pi }{3} \right)=-\dfrac{\sqrt{3}}{2}$$ . We have, $$\sin \left( \pm \dfrac{\pi }{3} \right)=\pm \dfrac{\sqrt{3}}{2}$$ . Now, solving $$\sin 3x=\pm \dfrac{\sqrt{3}}{2}$$ $$\Rightarrow \sin 3x=\sin \left( \pm \dfrac{\pi }{3} \right)$$ $$\begin{aligned} & \Rightarrow 3x=n\pi \pm \dfrac{\pi }{3} \\\ & \Rightarrow x=\dfrac{n\pi }{3}\pm \dfrac{\pi }{9} \\\ \end{aligned}$$ So, $$x=n\pi $$ or $$x=\dfrac{n\pi }{3}\pm \dfrac{\pi }{9}$$. Note: In this question, one can try to simplify the equation $$4\sin x.\sin 2x.\sin 4x=\sin 3x$$ using the formula $$2\sin A.\sin B=\cos (A-B)-\cos (A+B)$$ . One can consider x as A and 4x as B and then apply this formula. But when we apply this formula then we will get cosine terms. It means we will have sine terms and cosine terms in the equation due to which our equation needs to be converted into either sine terms or cosine terms. While conversion, we will face complexity. So, don’t approach this question by this method as it leads to complexity.