Solveeit Logo

Question

Question: Find the values of the following trigonometric functions (1) \[\sin {75^ \circ }\] (2) \[\cos ec...

Find the values of the following trigonometric functions
(1) sin75\sin {75^ \circ }
(2) cosec(1410)\cos ec( - {1410^ \circ })
(3) tan19π3\tan \dfrac{{19\pi }}{3}
(4) sin(11π3)\sin \left( {\dfrac{{ - 11\pi }}{3}} \right)
(5) cot(15π4)\cot \left( {\dfrac{{ - 15\pi }}{4}} \right)

Explanation

Solution

We will write each of the angles in each part in such a way that either we can apply some trigonometric formula on them or we can compare them using the quadrant diagram.
*sin(A+B)=sinAcosB+cosAsinB\sin (A + B) = \sin A\cos B + \cos A\sin B

  • We know the values of all trigonometric angles are positive in the first quadrant.
    Values of only sinθ\sin \theta are positive in the second quadrant.
    Values of only tanθ\tan \theta are positive in the third quadrant.
    Values of only cosθ\cos \theta are positive in the fourth quadrant.

Complete step-by-step answer:
We will solve each part separately using trigonometric formulas and concepts.
(1) sin75\sin {75^ \circ }
We can break the angle associated with the function into two parts and then use the formula of sin(A+B)=sinAcosB+cosAsinB\sin (A + B) = \sin A\cos B + \cos A\sin B
We can write 75=45+30{75^ \circ } = {45^ \circ } + {30^ \circ }
sin(75)=sin(45+30)\Rightarrow \sin ({75^ \circ }) = \sin ({45^ \circ } + {30^ \circ })
Apply formula sin(A+B)=sinAcosB+cosAsinB\sin (A + B) = \sin A\cos B + \cos A\sin B
sin(75)=sin(45)cos(30)+cos(45)sin(30)\Rightarrow \sin ({75^ \circ }) = \sin ({45^ \circ })\cos ({30^ \circ }) + \cos ({45^ \circ })\sin ({30^ \circ })
Now we substitute the value of sin(45)=12;cos(45)=12;cos(30)=32;sin(30)=12\sin ({45^ \circ }) = \dfrac{1}{{\sqrt 2 }};\cos ({45^ \circ }) = \dfrac{1}{{\sqrt 2 }};\cos ({30^ \circ }) = \dfrac{{\sqrt 3 }}{2};\sin ({30^ \circ }) = \dfrac{1}{{\sqrt 2 }}
sin(75)=(12×32)+(12×12)\Rightarrow \sin ({75^ \circ }) = \left( {\dfrac{1}{{\sqrt 2 }} \times \dfrac{{\sqrt 3 }}{2}} \right) + \left( {\dfrac{1}{2} \times \dfrac{1}{{\sqrt 2 }}} \right)
Multiply the values in RHS
sin(75)=(322)+(122)\Rightarrow \sin ({75^ \circ }) = \left( {\dfrac{{\sqrt 3 }}{{2\sqrt 2 }}} \right) + \left( {\dfrac{1}{{2\sqrt 2 }}} \right)
Take LCM in RHS
sin(75)=3+122\Rightarrow \sin ({75^ \circ }) = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}
\therefore Value of sin(75)\sin ({75^ \circ }) is 3+122\dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}
(2) cosec(1410)\cos ec( - {1410^ \circ })
We know sine function is an odd function, then cosecant function will also be an odd function.
cosec(x)=cosecx\Rightarrow \cos ec( - x) = - \cos ecx
Here we can write
cosec(1410)=cosec(1410)\Rightarrow \cos ec( - {1410^ \circ }) = - \cos ec({1410^ \circ })
Now we break the angle associated with cosine such that one part of it is multiple of any of the four values on the axis in quadrant diagram.
We can write 1410=144030{1410^ \circ } = {1440^ \circ } - {30^ \circ }
i.e. 1440=8×18030{1440^ \circ } = 8 \times {180^ \circ } - {30^ \circ }
Since we know that 180=π{180^ \circ } = \pi
1440=8×π30π180\Rightarrow {1440^ \circ } = 8 \times \pi - \dfrac{{30\pi }}{{180}}
1440=8ππ6\Rightarrow {1440^ \circ } = 8\pi - \dfrac{\pi }{6}
cosec(1440)=cosec(8ππ6)\Rightarrow \cos ec( - {1440^ \circ }) = - \cos ec(8\pi - \dfrac{\pi }{6})
Now from the quadrant diagram, 8π8\pi will be exactly where there are other even multiples of π\pi .
If we subtract an angle from that point, we will get a value in the fourth quadrant, where only cosine values are positive and rest all values are negative.
cosec(1440)=(cosec(π6))\Rightarrow \cos ec( - {1440^ \circ }) = - ( - \cos ec(\dfrac{\pi }{6}))
Multiply both negative signs to obtain positive sign
cosec(1440)=cosec(π6)\Rightarrow \cos ec( - {1440^ \circ }) = \cos ec(\dfrac{\pi }{6})
Since we know sinπ6=12\sin \dfrac{\pi }{6} = \dfrac{1}{2}, then cosecπ6=112=2\cos ec\dfrac{\pi }{6} = \dfrac{1}{{\dfrac{1}{2}}} = 2
cosec(1440)=2\Rightarrow \cos ec( - {1440^ \circ }) = 2
\therefore The value of cosec(1440)\cos ec( - {1440^ \circ }) is 2.
(3) tan19π3\tan \dfrac{{19\pi }}{3}
We can write 19π3=18π3+π3\dfrac{{19\pi }}{3} = \dfrac{{18\pi }}{3} + \dfrac{\pi }{3}
tan(19π3)=tan(18π3+π3)\tan \left( {\dfrac{{19\pi }}{3}} \right) = \tan \left( {\dfrac{{18\pi }}{3} + \dfrac{\pi }{3}} \right)
Cancel same factors from numerator and denominator in angle
tan(19π3)=tan(6π+π3)\Rightarrow \tan \left( {\dfrac{{19\pi }}{3}} \right) = \tan \left( {6\pi + \dfrac{\pi }{3}} \right)
From the quadrant diagram, 6π6\pi will be exactly where there are other even multiples of π\pi .
If we add an angle from that point, we will get a value in the first quadrant, where all values are positive.
tan(19π3)=tan(π3)\Rightarrow \tan \left( {\dfrac{{19\pi }}{3}} \right) = \tan \left( {\dfrac{\pi }{3}} \right)
We know the value of tan(π3)=3\tan \left( {\dfrac{\pi }{3}} \right) = \sqrt 3
tan(19π3)=3\Rightarrow \tan \left( {\dfrac{{19\pi }}{3}} \right) = \sqrt 3
\therefore The value of tan(19π3)\tan \left( {\dfrac{{19\pi }}{3}} \right) is 3\sqrt 3
(4) sin(11π3)\sin \left( {\dfrac{{ - 11\pi }}{3}} \right)
We know sine function is an odd function,
sin(x)=sinx\Rightarrow \sin ( - x) = - \sin x
Here we can write
sin(11π3)=sin(11π3)\Rightarrow \sin \left( {\dfrac{{ - 11\pi }}{3}} \right) = - \sin \left( {\dfrac{{11\pi }}{3}} \right)
Now we can write 11π3=12π3π3\dfrac{{11\pi }}{3} = \dfrac{{12\pi }}{3} - \dfrac{\pi }{3}
sin(11π3)=sin(12π3π3)\Rightarrow \sin \left( {\dfrac{{ - 11\pi }}{3}} \right) = - \sin \left( {\dfrac{{12\pi }}{3} - \dfrac{\pi }{3}} \right)
Cancel same factors from numerator and denominator in angle
sin(11π3)=sin(4ππ3)\Rightarrow \sin \left( {\dfrac{{ - 11\pi }}{3}} \right) = - \sin \left( {4\pi - \dfrac{\pi }{3}} \right)
From the quadrant diagram, 4π4\pi will be exactly where there are other even multiples of π\pi .
If we subtract an angle from that point, we will get a value in the fourth quadrant, where only cosine values are positive, rest all values are negative.
sin(11π3)=(sin(π3))\Rightarrow \sin \left( {\dfrac{{ - 11\pi }}{3}} \right) = - \left( { - \sin \left( {\dfrac{\pi }{3}} \right)} \right)
Multiply both negative signs to make positive sign
sin(11π3)=sin(π3)\Rightarrow \sin \left( {\dfrac{{ - 11\pi }}{3}} \right) = \sin \left( {\dfrac{\pi }{3}} \right)
We know the value of sinπ3=12\sin \dfrac{\pi }{3} = \dfrac{1}{2}
sin(11π3)=12\Rightarrow \sin \left( {\dfrac{{ - 11\pi }}{3}} \right) = \dfrac{1}{2}
\therefore The value of sin(11π3) \Rightarrow \sin \left( {\dfrac{{ - 11\pi }}{3}} \right) is 12\dfrac{1}{2}
(5) cot(15π4)\cot \left( {\dfrac{{ - 15\pi }}{4}} \right)
Since cotangent is an odd function
cot(x)=cotx\Rightarrow \cot ( - x) = - \cot x
cot(15π4)=cot(15π4)\Rightarrow \cot \left( {\dfrac{{ - 15\pi }}{4}} \right) = - \cot \left( {\dfrac{{15\pi }}{4}} \right)
Now we can write 15π4=16π4π4\dfrac{{15\pi }}{4} = \dfrac{{16\pi }}{4} - \dfrac{\pi }{4}
cot(15π4)=cot(16π4π4)\Rightarrow \cot \left( {\dfrac{{ - 15\pi }}{4}} \right) = - \cot \left( {\dfrac{{16\pi }}{4} - \dfrac{\pi }{4}} \right)
Cancel same factors from numerator and denominator in angle
cot(15π4)=cot(4ππ4)\Rightarrow \cot \left( {\dfrac{{ - 15\pi }}{4}} \right) = - \cot \left( {4\pi - \dfrac{\pi }{4}} \right)
From the quadrant diagram, 4π4\pi will be exactly where there are other even multiples of π\pi .
If we subtract an angle from that point, we will get a value in the fourth quadrant, where only cosine values are positive, rest all values are negative.
cot(15π4)=(cot(π4))\Rightarrow \cot \left( {\dfrac{{ - 15\pi }}{4}} \right) = - \left( { - \cot \left( {\dfrac{\pi }{4}} \right)} \right)
Multiply both negative signs to make positive sign
cot(15π4)=cot(π4)\Rightarrow \cot \left( {\dfrac{{ - 15\pi }}{4}} \right) = \cot \left( {\dfrac{\pi }{4}} \right)
Since we know the value of tan(π4)=1cot(π4)=1\tan \left( {\dfrac{\pi }{4}} \right) = 1 \Rightarrow \cot \left( {\dfrac{\pi }{4}} \right) = 1
cot(15π4)=1\Rightarrow \cot \left( {\dfrac{{ - 15\pi }}{4}} \right) = 1
\therefore The value of cot(15π4)\cot \left( {\dfrac{{ - 15\pi }}{4}} \right) is 1.

Note: Students are likely to make mistakes while calculating the values from the quadrant diagram, keep in mind that we always move anti-clockwise as we add the angles, so when we subtract the angle we move backwards or clockwise to see which quadrant our function lies in.
Students can take the help of table which gives us the values of some trigonometric functions at common angles like 0,30,45,60,90{0^ \circ },{30^ \circ },{45^ \circ },{60^ \circ },{90^ \circ } is

ANGLEFUNCTION0{0^ \circ }30{30^ \circ }45{45^ \circ }60{60^ \circ }90{90^ \circ }
Sin012\dfrac{1}{2}12\dfrac{1}{{\sqrt 2 }}32\dfrac{{\sqrt 3 }}{2}1
Cos132\dfrac{{\sqrt 3 }}{2}12\dfrac{1}{{\sqrt 2 }}12\dfrac{1}{2}0
Tan013\dfrac{1}{{\sqrt 3 }}13\sqrt 3 Not defined