Solveeit Logo

Question

Question: Find the values of the following: \({{\tan }^{-1}}\left( 1 \right)+{{\cos }^{-1}}\left( -\dfrac{1}...

Find the values of the following:
tan1(1)+cos1(12)+sin1(12){{\tan }^{-1}}\left( 1 \right)+{{\cos }^{-1}}\left( -\dfrac{1}{2} \right)+{{\sin }^{-1}}\left( -\dfrac{1}{2} \right)

Explanation

Solution

Hint: We will apply the formula of trigonometry here. There are three of them which we will use. These are tan(x)=tan(y)\tan \left( x \right)=\tan \left( y \right) which results into x=nπ+yx=n\pi +y, cos(x)=cos(y)\cos \left( x \right)=\cos \left( y \right) which results into x=2nπ±yx=2n\pi \pm y and sin(x)=sin(y)\sin \left( x \right)=\sin \left( y \right) which results into x=nπ+(1)nyx=n\pi +{{\left( -1 \right)}^{n}}y.

Complete step-by-step answer:
We first consider the expression tan1(1)+cos1(12)+sin1(12)...(i){{\tan }^{-1}}\left( 1 \right)+{{\cos }^{-1}}\left( -\dfrac{1}{2} \right)+{{\sin }^{-1}}\left( -\dfrac{1}{2} \right)...(i). Now we will find the value of tan1(1){{\tan }^{-1}}\left( 1 \right). This is done as by substituting tan1(1)=x{{\tan }^{-1}}\left( 1 \right)=x. After placing inverse tan to the right side of the equation we get 1=tan(x)1=\tan \left( x \right).
As we know that the value of tan(π4)=1\tan \left( \dfrac{\pi }{4} \right)=1. Therefore, we have tan(π4)=tan(x)\tan \left( \dfrac{\pi }{4} \right)=\tan \left( x \right).
Now we will apply the formula tan(x)=tan(y)\tan \left( x \right)=\tan \left( y \right) which results in x=nπ+yx=n\pi +y. Thus, we get x=nπ+π4x=n\pi +\dfrac{\pi }{4}. Here, n belongs to integers. So we will substitute n = 0. Therefore we have x=π4x=\dfrac{\pi }{4}. Since, tan1(1)=x{{\tan }^{-1}}\left( 1 \right)=x this results into tan1(1)=π4{{\tan }^{-1}}\left( 1 \right)=\dfrac{\pi }{4}.
Now, we will consider the next trigonometric term cos1(12){{\cos }^{-1}}\left( -\dfrac{1}{2} \right). We will substitute it as cos1(12)=y{{\cos }^{-1}}\left( -\dfrac{1}{2} \right)=y. By placing the inverse cosine to the right side of the equation we get cos(y)=12\cos \left( y \right)=-\dfrac{1}{2}.
As we know that the value of cos(π3)=12\cos \left( \dfrac{\pi }{3} \right)=\dfrac{1}{2} therefore, we have cos(y)=cos(π3)\cos \left( y \right)=-\cos \left( \dfrac{\pi }{3} \right). As cosine is negative only in the second and third quadrants so we will take it negative in the second quadrant. Since, the range of the inverse cosine is [0,π]\left[ 0,\pi \right]. Thus, we get cos(y)=cos(ππ3)\cos \left( y \right)=\cos \left( \pi -\dfrac{\pi }{3} \right) in the second quadrant. This results into cos(y)=cos(3ππ3)\cos \left( y \right)=\cos \left( \dfrac{3\pi -\pi }{3} \right) or, cos(y)=cos(2π3)\cos \left( y \right)=\cos \left( \dfrac{2\pi }{3} \right).
Now we will use the formula cos(x)=cos(y)\cos \left( x \right)=\cos \left( y \right) which results in x=2nπ±yx=2n\pi \pm y. By taking x as y and y as 2π3\dfrac{2\pi }{3}. Therefore, we have y=2nπ±2π3y=2n\pi \pm \dfrac{2\pi }{3} or, y=2π3y=\dfrac{2\pi }{3}. Since, cos1(12)=y{{\cos }^{-1}}\left( -\dfrac{1}{2} \right)=y thus we have cos1(12)=2π3{{\cos }^{-1}}\left( -\dfrac{1}{2} \right)=\dfrac{2\pi }{3}.
Now we will substitute sin1(12)=z{{\sin }^{-1}}\left( -\dfrac{1}{2} \right)=z. By taking inverse sine to the right side of the equation we have 12=sinz-\dfrac{1}{2}=\sin z.
As we know that the value of sin(π6)=12\sin \left( \dfrac{\pi }{6} \right)=\dfrac{1}{2} therefore, we get sinz=sin(π6)\sin z=-\sin \left( \dfrac{\pi }{6} \right). Since, sine is negative in the third and fourth quadrant. We will consider it in the fourth quadrant. This is for the reason here as the range of inverse sine is [π2,π2]\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right].
So, by the formula sin(x)=sin(y)\sin \left( x \right)=\sin \left( y \right) which results into x=nπ+(1)nyx=n\pi +{{\left( -1 \right)}^{n}}y we get sinz=sin(π6)\sin z=\sin \left( -\dfrac{\pi }{6} \right) or, z=nπ+(1)n(π6)z=n\pi +{{\left( -1 \right)}^{n}}\left( -\dfrac{\pi }{6} \right) or, z=π6z=-\dfrac{\pi }{6}. Since, sin1(12)=z{{\sin }^{-1}}\left( -\dfrac{1}{2} \right)=z therefore sin1(12)=π6{{\sin }^{-1}}\left( -\dfrac{1}{2} \right)=-\dfrac{\pi }{6}.
Now we will substitute all the values in the expression (i). Therefore, we get
tan1(1)+cos1(12)+sin1(12)=π4+2π3π6{{\tan }^{-1}}\left( 1 \right)+{{\cos }^{-1}}\left( -\dfrac{1}{2} \right)+{{\sin }^{-1}}\left( -\dfrac{1}{2} \right)=\dfrac{\pi }{4}+\dfrac{2\pi }{3}-\dfrac{\pi }{6}
As we know that the lcm of 4, 3 and 6 is 12. Thus we have
tan1(1)+cos1(12)+sin1(12)=3π+8π2π12 tan1(1)+cos1(12)+sin1(12)=9π12 tan1(1)+cos1(12)+sin1(12)=3π4 \begin{aligned} & {{\tan }^{-1}}\left( 1 \right)+{{\cos }^{-1}}\left( -\dfrac{1}{2} \right)+{{\sin }^{-1}}\left( -\dfrac{1}{2} \right)=\dfrac{3\pi +8\pi -2\pi }{12} \\\ & \Rightarrow {{\tan }^{-1}}\left( 1 \right)+{{\cos }^{-1}}\left( -\dfrac{1}{2} \right)+{{\sin }^{-1}}\left( -\dfrac{1}{2} \right)=\dfrac{9\pi }{12} \\\ & \Rightarrow {{\tan }^{-1}}\left( 1 \right)+{{\cos }^{-1}}\left( -\dfrac{1}{2} \right)+{{\sin }^{-1}}\left( -\dfrac{1}{2} \right)=\dfrac{3\pi }{4} \\\ \end{aligned}
Hence, the value of the expression tan1(1)+cos1(12)+sin1(12)=3π4{{\tan }^{-1}}\left( 1 \right)+{{\cos }^{-1}}\left( -\dfrac{1}{2} \right)+{{\sin }^{-1}}\left( -\dfrac{1}{2} \right)=\dfrac{3\pi }{4}.

Note: While placing cos1{{\cos }^{-1}} to the right side of the equation we will convert it as cos\cos . This is applied to all the inverse functions. We could have used the fourth quadrant also since cos is negative only in the second and third quadrants. But here the range matters. Since, the range of the inverse cosine is [0,π]\left[ 0,\pi \right]. Thus, we get cos(y)=cos(ππ3)\cos \left( y \right)=\cos \left( \pi -\dfrac{\pi }{3} \right) in the second quadrant only. Similarly, sine is negative in the third and fourth quadrant. We will consider it in the fourth quadrant. This is for the reason here as the range of inverse sine is [π2,π2]\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right].