Solveeit Logo

Question

Question: Find the values of tensions T1 & T2 as shown in fig. T₁ is the tension in the left inclined string a...

Find the values of tensions T1 & T2 as shown in fig. T₁ is the tension in the left inclined string and T2 is the tension in right inclined string.

Answer

T₁ = 100√3 N, T₂ = 100 N

Explanation

Solution

The junction point is in equilibrium. Resolving forces horizontally and vertically:

Horizontal equilibrium: T2cos(30)T1cos(60)=0T_2 \cos(30^\circ) - T_1 \cos(60^\circ) = 0 T232=T112    T1=3T2T_2 \frac{\sqrt{3}}{2} = T_1 \frac{1}{2} \implies T_1 = \sqrt{3} T_2

Vertical equilibrium: T1sin(60)+T2sin(30)200=0T_1 \sin(60^\circ) + T_2 \sin(30^\circ) - 200 = 0 T132+T212=200T_1 \frac{\sqrt{3}}{2} + T_2 \frac{1}{2} = 200

Substituting T1=3T2T_1 = \sqrt{3} T_2: (3T2)32+T212=200(\sqrt{3} T_2) \frac{\sqrt{3}}{2} + T_2 \frac{1}{2} = 200 32T2+12T2=200    2T2=200    T2=100\frac{3}{2} T_2 + \frac{1}{2} T_2 = 200 \implies 2 T_2 = 200 \implies T_2 = 100 N

T1=3×100=1003T_1 = \sqrt{3} \times 100 = 100\sqrt{3} N