Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

Find the values of sin1(sin2π3)\sin^{-1}(\sin^2\frac{\pi}{3})

Answer

sin1(sin2π3)\sin^{-1}(\sin^2\frac{\pi}{3})
We know that sin1\sin^{-1}(sin x) = x if x∈ [π2,π2][\frac{\pi}{2},\frac{\pi}{2}], which is the principal value branch of sin1\sin^{-1} x.

Here, 2π32 \frac{\pi}{3} ∉ [π2,π2-\frac{\pi}{2},\frac{\pi}{2} ]

Now,sin1(sin2π3)\sin^{-1}(\sin^2\frac{\pi}{3})can be written as:

sin1(sin2π3)=sin1[(sinπ2π3)]=sin1(sinπ3)\sin^{-1}(\sin^2\frac{\pi}{3})=\sin^{-1}[(\sin\frac{\pi-2\pi}{3})]=\sin^{-1}(sin\frac{\pi}{3}) where π3[π2,π2]\frac{\pi}{3}\in[-\frac{\pi}{2},\frac{\pi}{2}]

sin1(sin2π3=sin1(sinπ3)=π3\therefore \sin^{-1}(\sin^2\frac{\pi}{3}=\sin^{-1}(\sin\frac{\pi}{3})=\frac{\pi}{3}