Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

Find the values of P so the line1x3=7y142p=z32\frac{1-x}{3}=\frac{7y-14}{2p}=\frac{z-3}{2} and 77x3p=y51=6z5\frac{7-7x}{3p}=\frac{y-5}{1}=\frac{6-z}{5} are at right angles.

Answer

The given equation can be written in the standard form as
x13=y22p7=z32\frac{x-1}{-3}=\frac{y-2}{\frac{2p}{7}}=\frac{z-3}{2} and x13p7=y51=6z5\frac{x-1}{\frac{-3p}{7}}=\frac{y-5}{1}=\frac{6-z}{-5}

The direction ratios of the lines are -3 ,2p7\frac{2p}{7}, 2, and 3p7\frac{-3p}{7}, 1, -5 respectively.

Two lines with direction ratios, a1, b1, c1, and a2, b2, c2, are perpendicular to each other, if a1a2+b1b2+c1c2=0

∴(-3)(3p7)+(2p7)\bigg(\frac{-3p}{7}\bigg)+\bigg(\frac{2p}{7}\bigg)(1)+2.(-5)=0

9p7+2p7=10\Rightarrow \frac{9p}{7}+\frac{2p}{7}=10

\Rightarrow 11p=70

\Rightarrow p=7011\frac{70}{11}

Thus, the value of P is 7011\frac{70}{11}.