Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

Find the values of other five trigonometric functions if tanx=512tan\, x=-\frac{5}{12}, x lies in second quadrant.

Answer

tanx=512tan\,x=-\frac{5}{12}

cotx=1tanx=1(512)=125cot\,x\,=\frac{1}{tan\,x}=\frac{1}{(-\frac{5}{12})}=-\frac{12}{5}

1+tan2x=sec2x1+tan^2x=sec^2x

1+(512)2=sec2x⇒1+(-\frac{5}{12})^2=sec^2x

1+25144=sec2x⇒1+\frac{25}{144}=sec^2x

169144=sec2x⇒\frac{169}{144}=sec^2x

secx=±1312∴sec\,x=±\frac{13}{12}

Since x lies in the 2nd quadrant, the value of sec x will be negative.

sinx=1312sin\,x=-\frac{13}{12}

cosx=1secx=1(1312)=1213cos\,x=\frac{1}{sec\,x}=\frac{1}{(-\frac{13}{12})}=-\frac{12}{13}

tanx=sinxcosxtan\,x=\frac{sin\,x}{cos\,\,x}

512=sinx(1213)⇒-\frac{5}{12}=\frac{sin\,x}{(-\frac{12}{13})}

sinx=(512)×(1213)=513⇒sin\,x=(-\frac{5}{12})×(-\frac{12}{13})={\frac{5}{13}}

cosecx=1sinx=1(513)=135cosec\,x=\frac{1}{sin\,x}=\frac{1}{(\frac{5}{13})}=\frac{13}{5}