Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

Find the values of other five trigonometric functions if secx=135sec\, x=\frac{13}{5}, x lies in fourth quadrant.

Answer

secx=135sec\,x=\frac{13}{5}

cotx=1secx=1(135)=513cot\,x\,=\frac{1}{sec\,x}=\frac{1}{(\frac{13}{5})}=\frac{5}{13}

sin2x+cos2x=1⇒sin^2x+cos^2x=1

sin2x=1cos2x⇒sin^2x=1-cos^2x

sin2x=1(513)2⇒sin^2x=1-(\frac{5}{13})^2

sin2x=125169=144169⇒sin^2x=1-\frac{25}{169}=\frac{144}{169}

sinx=±1213⇒sin\,x=±\frac{12}{13}

Since x lies in the 4th quadrant, the value of sin x will be negative.

sinx=1213sin\,x=-\frac{12}{13}

cosecx=1sinx=1(1213)=1312cosec\,x=\frac{1}{sin\,\,x}=\frac{1}{(-\frac{12}{13})}=-\frac{13}{12}

taxx=sinxcosx=(1213)(513)=125tax\,\,x=\frac{sin\,x}{cos\,\,x}=\frac{(\frac{-12}{13})}{(\frac{5}{13})}=-\frac{12}{5}

cotx=1tan x=1(125)=512cot\,x=\frac{1}{tan\ x}=\frac{1}{(-\frac{12}{5})}=-\frac{5}{12}