Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

Find the values of other five trigonometric functions if cosx=12,cos\,x=-\frac{1}{2}, x lies in third quadrant.

Answer

cosx=12cos\,x=-\frac{1}{2}

secx=1cosx=1(12)=2∴sec\,x=\frac{1}{cos\,x}=\frac{1}{(-\frac{1}{2})}=-2

sin2x+cos2x=1sin^2x+cos^2\,x=1

sin2+cos2x=1⇒sin^2+cos^2\,x=1

sin2x=1(12)2⇒sin^2x=1-(-\frac{1}{2})^2

sin2x=114=34⇒sin^2x=1-\frac{1}{4}=\frac{3}{4}

sin2x=±±32sin^2x=±\frac{±√3}{2}

Since x lies in the 3rd quadrant, the value of sin x will be negative.

sinx=32∴sin\,x=-\frac{√3}{2}

cosecx=1sinx=132=23cosecx=\frac{1}{sin\,x}=\frac{1}{-\frac{√3}{2}}=-\frac{2}{√3}

tanx=sinxcosx=3212=3tan\,x=\frac{sin\,x}{cos \,x}=\frac{-\frac{√3}{2}}{-\frac{1}{2}}=√3

cotx=1tanx=13cot\,x=\frac{1}{tan\,x}=\frac{1}{√3}