Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Find the values of k so that the function f is continuous at the indicated point.
f(x)=\left\\{\begin{matrix} kx+1, &if\, x\leq\pi \\\ cos\,x,&if\,x>\pi \end{matrix}\right.\,at\,x=\pi

Answer

The given function is

f(x)=\left\\{\begin{matrix} kx+1, &if\, x\leq\pi \\\ cos\,x,&if\,x>\pi \end{matrix}\right.

The given function f is continuous at x=p, if f is defined at x=p and if the value of the f at x=p equals the limit of f at x=p.
It is evident that f is defined at x=p and f(π)=kπ+1
limxπ\lim_{x\rightarrow\pi^-} f(x)=limxπ+\lim_{x\rightarrow\pi^+}f(x)=f(π\pi)
\Rightarrow$$\lim_{x\rightarrow\pi^-}(kx+1)=limxπ+\lim_{x\rightarrow\pi^+}cosx=kπ\pi+1
\Rightarrowkπ\pi+1=cosπ\pi=kπ\pi+1
\Rightarrowkπ\pi+1=-1=kπ\pi+1
k=2π\frac{-2}{\pi}
Therefore, the required value of k is 2π\frac{-2}{\pi}.