Question
Mathematics Question on Continuity and differentiability
Find the values of k so that the function f is continuous at the indicated point.
f(x)=\left\\{\begin{matrix} \frac{k\,cos\,x}{\pi-2x}, &if\,x\neq\frac{\pi}{2} \\\ 3,&if\,x=\frac{\pi}{2} \end{matrix}\right.at\, x=\frac{\pi}{2}
f(x)=\left\\{\begin{matrix} \frac{k\,cos\,x}{\pi-2x}, &if\,x\neq\frac{\pi}{2} \\\ 3,&if\,x=\frac{\pi}{2} \end{matrix}\right.
The given function f is continuous at x=2π if f is defined at x=2π and if the value of the f at x=2π equals the limit of f at x=2π.
It is evident that f is defined at x=π/2 and f(π/2)=3
limx→2π f(x)=limx→2π π−2xkcosx
put x=2π+h
Then,x\rightarrow$$\frac{\pi}{2}$$\Rightarrowh→0
∴limx\rightarrow$$\frac{\pi}{2} f(x)=\lim_{x\rightarrow \frac{\pi}{2}}$$\frac{k\,cos\,x}{\pi-2x}=\lim_{h\rightarrow 0}$$\frac{k\,cos(\frac{\pi}{2}+h)}{\pi-2(\frac{\pi}{2}+h)}
=klimx→0−2hsinh=\frac{k}{2}$$\lim_{x\rightarrow 0^-}\frac{sin\,h}{2h}=2.1k=2k
∴limx→2π f(x)=f(2π)
\Rightarrow$$\frac{k}{2}=3
⇒k=6
Therefore, the required value of k is 6.