Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Find the values of k so that the function f is continuous at the indicated point.
f(x)=\left\\{\begin{matrix} \frac{k\,cos\,x}{\pi-2x}, &if\,x\neq\frac{\pi}{2} \\\ 3,&if\,x=\frac{\pi}{2} \end{matrix}\right.at\, x=\frac{\pi}{2}

Answer

f(x)=\left\\{\begin{matrix} \frac{k\,cos\,x}{\pi-2x}, &if\,x\neq\frac{\pi}{2} \\\ 3,&if\,x=\frac{\pi}{2} \end{matrix}\right.

The given function f is continuous at x=π2\frac{\pi}{2} if f is defined at x=π2\frac{\pi}{2} and if the value of the f at x=π2\frac{\pi}{2} equals the limit of f at x=π2\frac{\pi}{2}.
It is evident that f is defined at x=π/2 and f(π/2)=3
limxπ2\lim_{x\rightarrow \frac{\pi}{2}} f(x)=limxπ2\lim_{x\rightarrow \frac{\pi}{2}} kcosxπ2x\frac{k\,cos\,x}{\pi-2x}
put x=π2\frac{\pi}{2}+h
Then,x\rightarrow$$\frac{\pi}{2}$$\Rightarrowh\rightarrow0

∴limx\rightarrow$$\frac{\pi}{2} f(x)=\lim_{x\rightarrow \frac{\pi}{2}}$$\frac{k\,cos\,x}{\pi-2x}=\lim_{h\rightarrow 0}$$\frac{k\,cos(\frac{\pi}{2}+h)}{\pi-2(\frac{\pi}{2}+h)}
=klimx0sinh2h\lim_{x\rightarrow 0^-}\frac{sin\,h}{2h}=\frac{k}{2}$$\lim_{x\rightarrow 0^-}\frac{sin\,h}{2h}=k2.1\frac{k}{2.1}=k2\frac{k}{2}
limxπ2\lim_{x\rightarrow \frac{\pi}{2}} f(x)=f(π2\frac{\pi}{2})
\Rightarrow$$\frac{k}{2}=3

\Rightarrowk=6
Therefore, the required value of k is 6.