Solveeit Logo

Question

Question: Find the values of each of the following: \({{\tan }^{-1}}\left[ 2\cos \left( 2{{\sin }^{-1}}\left...

Find the values of each of the following:
tan1[2cos(2sin1(12))]{{\tan }^{-1}}\left[ 2\cos \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right) \right]

Explanation

Solution

Hint: We will apply the formula sin(x)=sin(y)\sin \left( x \right)=\sin \left( y \right) then x=nπ+(1)nyx=n\pi +{{\left( -1 \right)}^{n}}y. Here n belongs to the integers. We will use this formula in order to find the value of the angle of sine.

Complete step-by-step answer:
First we will consider tan1[2cos(2sin1(12))]...(i){{\tan }^{-1}}\left[ 2\cos \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right) \right]...(i). We will substitute the value of sin1(12)=a{{\sin }^{-1}}\left( \dfrac{1}{2} \right)=a. By placing the inverse sin operation to the right side of the equal sign then we will have sin(a)=12\sin \left( a \right)=\dfrac{1}{2}.
As we know that the value of sin(π6)=12\sin \left( \dfrac{\pi }{6} \right)=\dfrac{1}{2}. Therefore, we have that sin(a)=sin(π6)\sin \left( a \right)=\sin \left( \dfrac{\pi }{6} \right). The sine is positive in first and second quadrants. So, we will consider the sine in the first quadrant only due to the range of inverse sine which is [π2,π2]\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]. Therefore, we have that a=π6a=\dfrac{\pi }{6}. This is by the formula if we have sin(x)=sin(y)\sin \left( x \right)=\sin \left( y \right) then x=nπ+(1)nyx=n\pi +{{\left( -1 \right)}^{n}}y. Here n belongs to the integers. As we already have sin1(12)=a{{\sin }^{-1}}\left( \dfrac{1}{2} \right)=a so, we can write this expression as sin1(12)=π6{{\sin }^{-1}}\left( \dfrac{1}{2} \right)=\dfrac{\pi }{6}. Now, we will substitute this value in the equation (i). Thus, we have
tan1[2cos(2sin1(12))]=tan1[2cos(2×π6)] tan1[2cos(2sin1(12))]=tan1[2cos(π3)]...(ii) \begin{aligned} & {{\tan }^{-1}}\left[ 2\cos \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right) \right]={{\tan }^{-1}}\left[ 2\cos \left( 2\times \dfrac{\pi }{6} \right) \right] \\\ & \Rightarrow {{\tan }^{-1}}\left[ 2\cos \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right) \right]={{\tan }^{-1}}\left[ 2\cos \left( \dfrac{\pi }{3} \right) \right]...(ii) \\\ \end{aligned}
Now as we know that the value of cos(π3)=12\cos \left( \dfrac{\pi }{3} \right)=\dfrac{1}{2}. Therefore, after substituting the value in equation (ii) we will have
tan1[2cos(2sin1(12))]=tan1[2cos(π3)] tan1[2cos(2sin1(12))]=tan1[2×12] tan1[2cos(2sin1(12))]=tan1(1) \begin{aligned} & {{\tan }^{-1}}\left[ 2\cos \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right) \right]={{\tan }^{-1}}\left[ 2\cos \left( \dfrac{\pi }{3} \right) \right] \\\ & \Rightarrow {{\tan }^{-1}}\left[ 2\cos \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right) \right]={{\tan }^{-1}}\left[ 2\times \dfrac{1}{2} \right] \\\ & \Rightarrow {{\tan }^{-1}}\left[ 2\cos \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right) \right]={{\tan }^{-1}}\left( 1 \right) \\\ \end{aligned}
Now we will find the value of tan1(1){{\tan }^{-1}}\left( 1 \right). Since, the value of tan(π4)=1\tan \left( \dfrac{\pi }{4} \right)=1 so we will get
tan1[2cos(2sin1(12))]=tan1(1) tan1[2cos(2sin1(12))]=tan1(tan(π4)) \begin{aligned} & {{\tan }^{-1}}\left[ 2\cos \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right) \right]={{\tan }^{-1}}\left( 1 \right) \\\ & \Rightarrow {{\tan }^{-1}}\left[ 2\cos \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right) \right]={{\tan }^{-1}}\left( \tan \left( \dfrac{\pi }{4} \right) \right) \\\ \end{aligned}
Now we will apply the formula of tan1(tan(x))=x{{\tan }^{-1}}\left( \tan \left( x \right) \right)=x in the above expression. Therefore, we have
tan1[2cos(2sin1(12))]=π4\Rightarrow {{\tan }^{-1}}\left[ 2\cos \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right) \right]=\dfrac{\pi }{4}
And this is our required answer.
Hence, the value of the expression tan1[2cos(2sin1(12))]=π4{{\tan }^{-1}}\left[ 2\cos \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right) \right]=\dfrac{\pi }{4}.

Note: We could have used an alternate method of solving tan1[2cos(2sin1(12))]{{\tan }^{-1}}\left[ 2\cos \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right) \right].We will substitute the value of sin1(12)=a{{\sin }^{-1}}\left( \dfrac{1}{2} \right)=a. By placing the inverse sin operation to the right side of the equal sign then we will have sin(a)=12\sin \left( a \right)=\dfrac{1}{2}. And here we could have used the trigonometric identity which is given by sin1x+cos1x=π2{{\sin }^{-1}}x+{{\cos }^{-1}}x=\dfrac{\pi }{2} or, cos1x=π2sin1x{{\cos }^{-1}}x=\dfrac{\pi }{2}-{{\sin }^{-1}}x . Therefore, we get
cos1x=π2sin1x π2sin1(12)=π2sin1(sin(π6)) \begin{aligned} & {{\cos }^{-1}}x=\dfrac{\pi }{2}-{{\sin }^{-1}}x \\\ & \Rightarrow \dfrac{\pi }{2}-{{\sin }^{-1}}\left( \dfrac{1}{2} \right)=\dfrac{\pi }{2}-{{\sin }^{-1}}\left( \sin \left( \dfrac{\pi }{6} \right) \right) \\\ \end{aligned}
This is because the value of sin(π6)=12\sin \left( \dfrac{\pi }{6} \right)=\dfrac{1}{2}. Therefore we could have got the desired result by this method also.