Question
Question: Find The values of \(\cos {255^ \circ } + \sin {165^ \circ } = \) A.0 B.\(\dfrac{{\sqrt 3 - 1}}{...
Find The values of cos255∘+sin165∘=
A.0
B.33−1
C.223−1
D.22+1
Solution
In this question we can also write 255=120+135, 165=120+45. Then we will use cos(A+B)=cosAcosB−sinAsinB and sin(A+B)=sinAcosB+cosAsinBafter substituting the respective values and simplify to get the answer.
Complete step-by-step answer:
cos255∘+sin165∘=
We can also write
⇒cos(120+135)+sin(120+45)
We know that cos(A+B)=cosAcosB−sinAsinB and sin(A+B)=sinAcosB+cosAsinB so the equation will become
⇒(cos120∘cos135∘−sin120∘sin135∘)+(sin120∘cos45∘+cos120∘sin45∘)
Substituting the respective values, we get
⇒(2−1×2−1−23×21)+(23×21+2−1×21) ⇒0
So, cos255∘+sin165∘=0
Answer is (A)
Note: Trigonometric formula used are cos(A+B)=cosAcosB−sinAsinB and sin(A+B)=sinAcosB+cosAsinB. Values of some used here must be have to memorized
sin45∘=21=cos45∘ sin135∘=21 cos135∘=2−1 sin120∘=23 cos120∘=2−1