Solveeit Logo

Question

Question: Find The values of \(\cos {255^ \circ } + \sin {165^ \circ } = \) A.0 B.\(\dfrac{{\sqrt 3 - 1}}{...

Find The values of cos255+sin165=\cos {255^ \circ } + \sin {165^ \circ } =
A.0
B.313\dfrac{{\sqrt 3 - 1}}{{\sqrt 3 }}
C.3122\dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}
D.2+12\dfrac{{\sqrt 2 + 1}}{{\sqrt 2 }}

Explanation

Solution

In this question we can also write 255=120+135255 = 120 + 135, 165=120+45165 = 120 + 45. Then we will use cos(A+B)=cosAcosBsinAsinB\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B and sin(A+B)=sinAcosB+cosAsinB\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin Bafter substituting the respective values and simplify to get the answer.

Complete step-by-step answer:
cos255+sin165=\cos {255^ \circ } + \sin {165^ \circ } =
We can also write
cos(120+135)+sin(120+45)\Rightarrow \cos \left( {120 + 135} \right) + \sin \left( {120 + 45} \right)
We know that cos(A+B)=cosAcosBsinAsinB\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B and sin(A+B)=sinAcosB+cosAsinB\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B so the equation will become
(cos120cos135sin120sin135)+(sin120cos45+cos120sin45)\Rightarrow \left( {\cos {{120}^ \circ }\cos {{135}^ \circ } - \sin {{120}^ \circ }\sin {{135}^ \circ }} \right) + \left( {\sin {{120}^ \circ }\cos {{45}^ \circ } + \cos {{120}^ \circ }\sin {{45}^ \circ }} \right)
Substituting the respective values, we get
(12×1232×12)+(32×12+12×12) 0  \Rightarrow \left( {\dfrac{{ - 1}}{2} \times \dfrac{{ - 1}}{{\sqrt 2 }} - \dfrac{{\sqrt 3 }}{2} \times \dfrac{1}{{\sqrt 2 }}} \right) + \left( {\dfrac{{\sqrt 3 }}{2} \times \dfrac{1}{{\sqrt 2 }} + \dfrac{{ - 1}}{2} \times \dfrac{1}{{\sqrt 2 }}} \right) \\\ \Rightarrow 0 \\\
So, cos255+sin165=\cos {255^ \circ } + \sin {165^ \circ } = 0
Answer is (A)

Note: Trigonometric formula used are cos(A+B)=cosAcosBsinAsinB\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B and sin(A+B)=sinAcosB+cosAsinB\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B. Values of some used here must be have to memorized
sin45=12=cos45 sin135=12 cos135=12 sin120=32 cos120=12  \sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }} = \cos {45^ \circ } \\\ \sin {135^ \circ } = \dfrac{1}{{\sqrt 2 }} \\\ \cos {135^ \circ } = \dfrac{{ - 1}}{{\sqrt 2 }} \\\ \sin {120^ \circ } = \dfrac{{\sqrt 3 }}{2} \\\ \cos {120^ \circ } = \dfrac{{ - 1}}{2} \\\