Solveeit Logo

Question

Question: Find the values of \[{{\cos }^{-1}}\left( \dfrac{1}{2} \right)+2{{\sin }^{-1}}\left( \dfrac{1}{2} \r...

Find the values of cos1(12)+2sin1(12){{\cos }^{-1}}\left( \dfrac{1}{2} \right)+2{{\sin }^{-1}}\left( \dfrac{1}{2} \right).

Explanation

Solution

Hint: To solve the question given above, we will first out the values of cos1(12){{\cos }^{-1}}\left( \dfrac{1}{2} \right) and 2sin1(12)2{{\sin }^{-1}}\left( \dfrac{1}{2} \right). The value of 2sin1(12)2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) will be calculated with the help of the formula given below:
2sin1(x)=sin1(2x1x2)2{{\sin }^{-1}}\left( x \right)={{\sin }^{-1}}\left( 2x\sqrt{1-{{x}^{2}}} \right). After calculating the respective values of cos1(12){{\cos }^{-1}}\left( \dfrac{1}{2} \right) and 2sin1(12)2{{\sin }^{-1}}\left( \dfrac{1}{2} \right), we will add both their values to get the final answer.

Complete step-by-step solution -
To start with, we will first find out the value of cos1(12){{\cos }^{-1}}\left( \dfrac{1}{2} \right). Now, we know that the value of cos60=12\cos {{60}^{\circ }}=\dfrac{1}{2}. Thus, we have:
cos60=12\Rightarrow \cos {{60}^{\circ }}=\dfrac{1}{2}
Now, we will convert 60{{60}^{\circ }} to radian form. The conversion from degree to radian is achieved by the following formula:
x=π180×x{{x}^{\circ }}=\dfrac{\pi }{180}\times x radian
Thus the value of 60{{60}^{\circ }} = π180×60=π3\dfrac{\pi }{180}\times {{60}^{\circ }}=\dfrac{\pi }{3}. Thus, we will get:
cos(π3)=12\Rightarrow \cos \left( \dfrac{\pi }{3} \right)=\dfrac{1}{2}
Now, we will take cos1{{\cos }^{-1}} on both sides, thus we will get the following:
cos1(cos(π3))=cos1(12)\Rightarrow {{\cos }^{-1}}\left( \cos \left( \dfrac{\pi }{3} \right) \right)={{\cos }^{-1}}\left( \dfrac{1}{2} \right)
Now, we will use the identity shown below:
cos1(cosx)=x\Rightarrow {{\cos }^{-1}}\left( \cos x \right)=x (if 1x1-1\le x\le 1)
Thus, we will get:
π3=cos1(12)\Rightarrow \dfrac{\pi }{3}={{\cos }^{-1}}\left( \dfrac{1}{2} \right)
cos1(12)=π3\Rightarrow {{\cos }^{-1}}\left( \dfrac{1}{2} \right)=\dfrac{\pi }{3} ----- (1)
Now, we will find the value of 2sin1(12)2{{\sin }^{-1}}\left( \dfrac{1}{2} \right). The value of 2sin1(12)2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) is calculated by the formula given below:
2sin1x=sin1(2x1x2)2{{\sin }^{-1}}x={{\sin }^{-1}}\left( 2x\sqrt{1-{{x}^{2}}} \right)
In our case the value of x is 12\dfrac{1}{2}. So, we will get:

& 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right)={{\sin }^{-1}}\left[ 2\left( \dfrac{1}{2} \right)\sqrt{1-{{\left( \dfrac{1}{2} \right)}^{2}}} \right] \\\ & \Rightarrow 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right)={{\sin }^{-1}}\left[ 1\times \sqrt{1-\dfrac{1}{4}} \right] \\\ \end{aligned}$$ $$\Rightarrow 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right)={{\sin }^{-1}}\left[ \dfrac{\sqrt{3}}{2} \right]$$ ------ (2) Now, we know that the value of $$\sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2}$$. Thus, we have: $$\sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2}$$ $$\begin{aligned} & \sin \left( 60\times \dfrac{\pi }{180}radian \right)=\dfrac{\sqrt{3}}{2} \\\ & \Rightarrow \sin \left( \dfrac{\pi }{3} \right)=\dfrac{\sqrt{3}}{2} \\\ \end{aligned}$$ Now, we will take $${{\sin }^{-1}}$$ on both sides. After doing this, we will get the following equation: $$\Rightarrow {{\sin }^{-1}}\left( \sin \left( \dfrac{\pi }{3} \right) \right)={{\sin }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)$$ Now, we will use an inverse trigonometric identity shown below: $${{\sin }^{-1}}\left( \sin x \right)=x$$ (if $$-1\le x\le 1$$) Thus, we will get following equation: $$\dfrac{\pi }{3}={{\sin }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)$$ Now, we will put this value of $${{\sin }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)$$ from above equation to (ii). Thus, we will get eh following equation: $${{\sin }^{-1}}\left( \dfrac{1}{2} \right)=\dfrac{\pi }{3}$$ ------- (3) Now, we will add equations (1) and (3). After doing this, we will get: $$\begin{aligned} & \Rightarrow {{\cos }^{-1}}\left( \dfrac{1}{2} \right)+2{{\sin }^{-1}}\left( \dfrac{1}{2} \right)=\dfrac{\pi }{3}+\dfrac{\pi }{3} \\\ & \Rightarrow {{\cos }^{-1}}\left( \dfrac{1}{2} \right)+2{{\sin }^{-1}}\left( \dfrac{1}{2} \right)=\dfrac{2\pi }{3} \\\ \end{aligned}$$. Note: The above question can also be solve by the method shown below: We can also write $${{\cos }^{-1}}\left( \dfrac{1}{2} \right)+2{{\sin }^{-1}}\left( \dfrac{1}{2} \right)$$ as shown below: $$\begin{aligned} & \Rightarrow {{\cos }^{-1}}\left( \dfrac{1}{2} \right)+2{{\sin }^{-1}}\left( \dfrac{1}{2} \right)={{\cos }^{-1}}\left( \dfrac{1}{2} \right)+{{\sin }^{-1}}\left( \dfrac{1}{2} \right)+{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \\\ & \Rightarrow {{\cos }^{-1}}\left( \dfrac{1}{2} \right)+2{{\sin }^{-1}}\left( \dfrac{1}{2} \right)=\left[ {{\cos }^{-1}}\left( \dfrac{1}{2} \right)+{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right]+{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \\\ \end{aligned}$$ Now, we will use the identity: $${{\cos }^{-1}}x+{{\sin }^{-1}}x=\dfrac{\pi }{2}$$. Thus, we will get, $$\begin{aligned} & \Rightarrow {{\cos }^{-1}}\left( \dfrac{1}{2} \right)+2{{\sin }^{-1}}\left( \dfrac{1}{2} \right)=\left[ \dfrac{\pi }{2} \right]+{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \\\ & \Rightarrow {{\cos }^{-1}}\left( \dfrac{1}{2} \right)+2{{\sin }^{-1}}\left( \dfrac{1}{2} \right)=\dfrac{\pi }{2}+\dfrac{\pi }{6} \\\ & \Rightarrow {{\cos }^{-1}}\left( \dfrac{1}{2} \right)+2{{\sin }^{-1}}\left( \dfrac{1}{2} \right)=\dfrac{2\pi }{3} \\\ \end{aligned}$$.