Solveeit Logo

Question

Question: Find the values of b for which the function \(f\left( x \right) = \sin x - bx + c\) is a decreasing ...

Find the values of b for which the function f(x)=sinxbx+cf\left( x \right) = \sin x - bx + c is a decreasing function on R.

Explanation

Solution

Hint: First differentiate f(x) w.r.t x and then apply the condition of decreasing function i.e. d(f(x))dx0\dfrac{{d\left( {f\left( x \right)} \right)}}{{dx}} \leqslant 0.

Complete step-by-step answer:
As you know,
A function is decreasing in the range when d(f(x))dx0\dfrac{{d\left( {f\left( x \right)} \right)}}{{dx}} \leqslant 0

First diff f(x) w.r.t x
f(x)d(f(x))dx=d(sinxbx+c)dxf`\left( x \right)\dfrac{{d\left( {f\left( x \right)} \right)}}{{dx}} = \dfrac{{d\left( {\sin x - bx + c} \right)}}{{dx}}
f(x)=cosxb\Rightarrow f`\left( x \right) = \cos x - b
Now apply the condition of function is decreasing
d(f(x))dx0\dfrac{{d\left( {f\left( x \right)} \right)}}{{dx}} \leqslant 0
cosxb0\Rightarrow \cos x - b \leqslant 0
cosxb\Rightarrow \cos x \leqslant b

As you know the range of cosx is [-1, 1]

If we consider maximum value of cosx is 1 so you can easily see b1b \geqslant 1
So, b[1,)b \in [1,\infty )

Note: Always in such problems apply the condition of increasing or decreasing and carefully solve the inequalities. So you can easily get the answer and save your time