Solveeit Logo

Question

Question: Find the values and then prove the expression \({{\cos }^{-1}}\left( \dfrac{12}{13} \right)+{{\sin }...

Find the values and then prove the expression cos1(1213)+sin1(35)=sin1(5665){{\cos }^{-1}}\left( \dfrac{12}{13} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right)={{\sin }^{-1}}\left( \dfrac{56}{65} \right)

Explanation

Solution

Hint: We will apply the trigonometric formula cos(θ)=BaseHypotenuse\cos \left( \theta \right)=\dfrac{\text{Base}}{\text{Hypotenuse}} and sin(a)=PerpendicularHypotenuse\sin \left( a \right)=\dfrac{\text{Perpendicular}}{\text{Hypotenuse}} to prove the expression. Also, we will use Pythagoras theorem here.

Complete step-by-step answer:
cos1(1213)+sin1(35)=sin1(5665){{\cos }^{-1}}\left( \dfrac{12}{13} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right)={{\sin }^{-1}}\left( \dfrac{56}{65} \right)
cos1(1213)=a (1213)=cos(a) \begin{aligned} & {{\cos }^{-1}}\left( \dfrac{12}{13} \right)=a \\\ & \Rightarrow \left( \dfrac{12}{13} \right)=\cos \left( a \right) \\\ \end{aligned}
Since, we know that cos(θ)=BaseHypotenuse\cos \left( \theta \right)=\dfrac{\text{Base}}{\text{Hypotenuse}}. Therefore we can have 12 as a base and 13 as a hypotenuse of a right angled triangle as shown below. Therefore, we have

So, by Pythagoras theorem we have
(13)2=(12)2+x2 (13)2(12)2=x2 169144=x2 x2=25 x=5 \begin{aligned} & {{\left( 13 \right)}^{2}}={{\left( 12 \right)}^{2}}+{{x}^{2}} \\\ & \Rightarrow {{\left( 13 \right)}^{2}}-{{\left( 12 \right)}^{2}}={{x}^{2}} \\\ & \Rightarrow 169-144={{x}^{2}} \\\ & \Rightarrow {{x}^{2}}=25 \\\ & \Rightarrow x=5 \\\ \end{aligned}
Now this x = 5 is the value of perpendicular. Therefore, we can find the value of sin(a)=PerpendicularHypotenuse\sin \left( a \right)=\dfrac{\text{Perpendicular}}{\text{Hypotenuse}}. Since, perpendicular is 5 units and hypotenuse is 13. Therefore, we have sin(a)=513\sin \left( a \right)=\dfrac{5}{13}.
Now we will consider sin1(35)=b{{\sin }^{-1}}\left( \dfrac{3}{5} \right)=b. By taking the inverse sine operator to the right side of the equation we have (35)=sin(b)\left( \dfrac{3}{5} \right)=\sin \left( b \right). Since, we know that sin(a)=PerpendicularHypotenuse\sin \left( a \right)=\dfrac{\text{Perpendicular}}{\text{Hypotenuse}}. Therefore we can have 3 as perpendicular and 5 as a hypotenuse of a right angled triangle as shown below. Therefore, we have

So, by Pythagoras theorem we have
(5)2=(3)2+y2 (5)2(3)2=y2 y2=259 y2=16 y=±4 \begin{aligned} & {{\left( 5 \right)}^{2}}={{\left( 3 \right)}^{2}}+{{y}^{2}} \\\ & \Rightarrow {{\left( 5 \right)}^{2}}-{{\left( 3 \right)}^{2}}={{y}^{2}} \\\ & \Rightarrow {{y}^{2}}=25-9 \\\ & \Rightarrow {{y}^{2}}=16 \\\ & \Rightarrow y=\pm 4 \\\ \end{aligned}
Since the side cannot be negative therefore we have y = 4. Now this side BC will work as a base of the triangle. Thus, we can find the value of cos(b)=BaseHypotenuse\cos \left( b \right)=\dfrac{\text{Base}}{\text{Hypotenuse}}. Since, the base is now 4 units and the hypotenuse is 5 units therefore we get cos(b)=45\cos \left( b \right)=\dfrac{4}{5}.
Now we will apply the formula sin(a+b)=sin(a)cos(b)+cos(a)sin(b)\sin \left( a+b \right)=\sin \left( a \right)\cos \left( b \right)+\cos \left( a \right)\sin \left( b \right). Now by substituting the values in this formula we have
sin(a+b)=513×45+1213×35 sin(a+b)=2065+3665 sin(a+b)=5665 \begin{aligned} & \sin \left( a+b \right)=\dfrac{5}{13}\times \dfrac{4}{5}+\dfrac{12}{13}\times \dfrac{3}{5} \\\ & \Rightarrow \sin \left( a+b \right)=\dfrac{20}{65}+\dfrac{36}{65} \\\ & \Rightarrow \sin \left( a+b \right)=\dfrac{56}{65} \\\ \end{aligned}
Now we will take the sine operation to the right side of the equation. Therefore, we get sin(a+b)=5665 a+b=sin1(5665) \begin{aligned} & \sin \left( a+b \right)=\dfrac{56}{65} \\\ & \Rightarrow a+b={{\sin }^{-1}}\left( \dfrac{56}{65} \right) \\\ \end{aligned}
As we know that the values of a and b are given as cos1(1213)=a{{\cos }^{-1}}\left( \dfrac{12}{13} \right)=a and sin1(35)=b{{\sin }^{-1}}\left( \dfrac{3}{5} \right)=b. Therefore, by substituting the values in the expression a+b=sin1(5665)a+b={{\sin }^{-1}}\left( \dfrac{56}{65} \right). Therefore we get cos1(1213)+sin1(35)=sin1(5665){{\cos }^{-1}}\left( \dfrac{12}{13} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right)={{\sin }^{-1}}\left( \dfrac{56}{65} \right).
Hence, the expression cos1(1213)+sin1(35)=sin1(5665){{\cos }^{-1}}\left( \dfrac{12}{13} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right)={{\sin }^{-1}}\left( \dfrac{56}{65} \right) is proved.

Note: We could have solved it by an alternate method. In this method we can solve it as cos1(1213)=a (1213)=cos(a) \begin{aligned} & {{\cos }^{-1}}\left( \dfrac{12}{13} \right)=a \\\ & \Rightarrow \left( \dfrac{12}{13} \right)=\cos \left( a \right) \\\ \end{aligned}
By using the trigonometry identity here which is given by cos2(a)+sin2(a)=1{{\cos }^{2}}\left( a \right)+{{\sin }^{2}}\left( a \right)=1. This results in sin2(a)=1cos2(a){{\sin }^{2}}\left( a \right)=1-{{\cos }^{2}}\left( a \right). Therefore we have
sin2(a)=1cos2(a) sin2(a)=1(1213)2 sin2(a)=1144169 sin2(a)=169144169 sin2(a)=25169 sin(a)=513 \begin{aligned} & {{\sin }^{2}}\left( a \right)=1-{{\cos }^{2}}\left( a \right) \\\ & \Rightarrow {{\sin }^{2}}\left( a \right)=1-{{\left( \dfrac{12}{13} \right)}^{2}} \\\ & \Rightarrow {{\sin }^{2}}\left( a \right)=1-\dfrac{144}{169} \\\ & \Rightarrow {{\sin }^{2}}\left( a \right)=\dfrac{169-144}{169} \\\ & \Rightarrow {{\sin }^{2}}\left( a \right)=\dfrac{25}{169} \\\ & \Rightarrow \sin \left( a \right)=\dfrac{5}{13} \\\ \end{aligned}
Similarly, we can solve the remaining by this formula and get the desired proof.