Solveeit Logo

Question

Question: Find the value(s) of x for which \( y = {\left[ {x\left( {x - 2} \right)} \right]^2} \) is an...

Find the value(s) of x for which
y=[x(x2)]2y = {\left[ {x\left( {x - 2} \right)} \right]^2}
is an increasing function.

Explanation

Solution

Hint : To find the points or intervals where the given function is increasing, we need to follow the procedure:
Calculate dydx\dfrac{{dy}}{{dx}} , equate it equal to zero to get the values of a.
The intervals where dydx>0\dfrac{{dy}}{{dx}} > 0 , at these the function is increasing.
Apply:
d(uv)dx=udvdx+vdudx\dfrac{{d\left( {uv} \right)}}{{dx}} = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}

Complete step-by-step answer :
We have,
y=[x(x2)]2y = {\left[ {x\left( {x - 2} \right)} \right]^2}

Differentiating to the sides w.r.t x, we get
dydx=2[x(x2)]ddx[x(x2)]\dfrac{{dy}}{{dx}} = 2[x(x - 2)]\dfrac{d}{{dx}}[x(x - 2)]
[Because ddx(xn)=nxn1ddx(x)]\left[ {{\text{Because }}\dfrac{d}{{dx}}({x^n}) = n{x^{n - 1}}\dfrac{d}{{dx}}(x)} \right]
=2(x22x).(2x2)= 2({x^2} - 2x).(2x - 2)
[Simplifying]
dydx=4x(x1)(x2)\dfrac{{dy}}{{dx}} = 4x\left( {x - 1} \right)\left( {x - 2} \right) ------(1)
Equating this to zero, we obtain:
dydx=0\dfrac{{dy}}{{dx}} = 0
4x(x1)(x2)=04x\left( {x - 1} \right)\left( {x - 2} \right) = 0
The values of x are:
X=0, x=1 and x=2
Intervals can be written as:
(,0),(0,1)(1,2),(2,)\left( { - \infty ,0} \right),\left( {0,1} \right)\left( {1,2} \right),\left( {2,\infty } \right)

Checking the points on the number line by substituting these in (1), we get:

dydx\dfrac{{dy}}{{dx}} for intervals the value of x is:
(0,1) is positive
(1,2) is negative
(2,∞ is positive
Therefore, it can be said that the given function is increasing in the intervals
x(0,1)(2,)x \in \left( {0,1} \right) \cup \left( {2,\infty } \right)

Note : Always check on number line the substituted values of x in dydx\dfrac{{dy}}{{dx}} so as to confirm the interval where function increases/decreases