Solveeit Logo

Question

Question: Find the value of \({{y}_{n}}\), when \(y={{e}^{x}}(3{{x}^{2}}-4)\), Find \({{y}_{n}}\)....

Find the value of yn{{y}_{n}}, when y=ex(3x24)y={{e}^{x}}(3{{x}^{2}}-4), Find yn{{y}_{n}}.

Explanation

Solution

Hint: In this question first we will Select a term as uu and vv. Differentiate it till you get zero by using Leibnitz theorem.

Complete step-by-step answer:
So to find yn{{y}_{n}} means to find dnydxn\dfrac{{{d}^{n}}y}{d{{x}^{n}}},
So for nth derivative we know that we should use Leibnitz theorem,
The product rule is a formula used to find the derivatives of products of two or more functions. It may be stated as,
(f.g)=f.g+f.g{{(f.g)}^{'}}={{f}^{'}}.g+f.{{g}^{'}}
or in Leibnitz's notation,
d(u.v)dx=dudx.v+u.dvdx\dfrac{d(u.v)}{dx}=\dfrac{du}{dx}.v+u.\dfrac{dv}{dx}
In different notation it can be written as,
d(uv)=udv+vdud(uv)=udv+vdu
The product rule can be considered a special case of the chain rule for several variables.
So the chain rule is,
d(ab)dx=(ab)adadx+(ab)bdbdx\dfrac{d(ab)}{dx}=\dfrac{\partial (ab)}{\partial a}\dfrac{da}{dx}+\dfrac{\partial (ab)}{\partial b}\dfrac{db}{dx}
So we have to use the Leibnitz theorem,
So Leibnitz Theorem provides a useful formula for computing thenth{{n}^{th}}derivative of a product of two functions. This theorem (Leibnitz theorem) is also called a theorem for successive differentiation.
This theorem is used for finding the nth{{n}^{th}} derivative of a product. The Leibnitz formula expresses the derivative on nth{{n}^{th}}order of the product of two functions.
If y=u.vy=u.v then dndxn(u.v)=uvn+nc1u1vn1+nc2u2vn2+.......+ncrurvnr+....+unv\dfrac{{{d}^{n}}}{d{{x}^{n}}}(u.v)=u{{v}_{n}}+{}^{n}{{c}_{1}}{{u}_{1}}{{v}_{n-1}}+{}^{n}{{c}_{2}}{{u}_{2}}{{v}_{n-2}}+.......+{}^{n}{{c}_{r}}{{u}_{r}}{{v}_{n-r}}+....+{{u}_{n}}{{v}_{{}}}……(1)
The above theorem is Leibnitz theorem,
So Now Let us consider u=3x24u=3{{x}^{2}}-4 and v=exv={{e}^{x}}
Here now differentiatinguufor first derivativeu1{{u}_{1}},then second derivativeu2{{u}_{2}}and then third derivativeu3{{u}_{3}}.
So we get the derivatives as,
So we get u1,u2,u3{{u}_{1}},{{u}_{2}},{{u}_{3}},
So u1=6x{{u}_{1}}=6x, u2=6{{u}_{2}}=6,u3=0{{u}_{3}}=0…..(2)
Also differentiating forvv, For first , second,nth{{n}^{th}}derivatives , (n1)th{{(n-1)}^{th}}derivatives, (n2)nd{{(n-2)}^{nd}}derivative,
So we get the derivatives as,
same for v1=ex{{v}_{1}}={{e}^{x}},v2=ex{{v}_{2}}={{e}^{x}}, v3=ex{{v}_{3}}={{e}^{x}} Sovn=ex,vn1=ex,vn2=ex{{v}_{n}}={{e}^{x}},{{v}_{n-1}}={{e}^{x}},{{v}_{n-2}}={{e}^{x}} ………(3)
Now we have to substitute (2) and (3) in (1), that is substituting in Leibnitz theorem,
We get,
\Rightarrow dndxn((3x24)ex)=(3x24)ex+nc16xex+nc26ex\dfrac{{{d}^{n}}}{d{{x}^{n}}}((3{{x}^{2}}-4){{e}^{x}})=(3{{x}^{2}}-4){{e}^{x}}+{}^{n}{{c}_{1}}6x{{e}^{x}}+{}^{n}{{c}_{2}}6{{e}^{x}}
\Rightarrow dndxn((3x24)ex)=(3x24)ex+n6xex+n(n1)26ex\dfrac{{{d}^{n}}}{d{{x}^{n}}}((3{{x}^{2}}-4){{e}^{x}})=(3{{x}^{2}}-4){{e}^{x}}+n6x{{e}^{x}}+\dfrac{n(n-1)}{2}6{{e}^{x}}………………(we knownc1=n{}^{n}{{c}_{1}}=nand nc2=n(n1)2{}^{n}{{c}_{2}}=\dfrac{n(n-1)}{2})
So simplifying in simple manner we get,
dndxn((3x24)ex)=(3x24)ex+6nxex+3n(n1)ex dndxn((3x24)ex)=ex((3x24)+6nx+3n(n1)) \begin{aligned} & \dfrac{{{d}^{n}}}{d{{x}^{n}}}((3{{x}^{2}}-4){{e}^{x}})=(3{{x}^{2}}-4){{e}^{x}}+6nx{{e}^{x}}+3n(n-1){{e}^{x}} \\\ & \dfrac{{{d}^{n}}}{d{{x}^{n}}}((3{{x}^{2}}-4){{e}^{x}})={{e}^{x}}((3{{x}^{2}}-4)+6nx+3n(n-1)) \\\ \end{aligned}
As we want to find fornth{{n}^{th}} derivative, So we get the final answer as,
Hence yn=ex((3x24)+6nx+3n(n1)){{y}_{n}}={{e}^{x}}((3{{x}^{2}}-4)+6nx+3n(n-1))

Note: Be careful using Leibnitz theorem. Use proper substitution of uu and vv. Don’t be confused while applying the uu and vv. While solving confusion occurs. Use the differentiation in the correct manner. Be thorough with nc1=n{}^{n}{{c}_{1}}=nand more. Use proper substitution ofuuand vv. Don’t jumble between u1=6x{{u}_{1}}=6x,u2=6{{u}_{2}}=6etc.