Solveeit Logo

Question

Question: Find the value of \({{y}_{2n}}\), If \(y=(1-{{x}^{2}})\cos x\)....

Find the value of y2n{{y}_{2n}}, If y=(1x2)cosxy=(1-{{x}^{2}})\cos x.

Explanation

Solution

Hint: The differentiation to be found can be found using the Leibnitz rule for differentiation. The Leibnitz rule for finding successive differentiation can be stated as the derivative of nth{{n}^{th}} order is given by the following rule:
If y=u.vy=u.v then dndxn(u.v)=uvn+nc1u1vn1+nc2u2vn2+.......+ncrurvnr+....+unv\frac{{{d}^{n}}}{d{{x}^{n}}}(u.v)=u{{v}_{n}}+{}^{n}{{c}_{1}}{{u}_{1}}{{v}_{n-1}}+{}^{n}{{c}_{2}}{{u}_{2}}{{v}_{n-2}}+.......+{}^{n}{{c}_{r}}{{u}_{r}}{{v}_{n-r}}+....+{{u}_{n}}{{v}_{{}}}

Complete step-by-step solution -
Here We have to find y2n{{y}_{2n}}
The product rule is a formula used to find the derivatives of products of two or more functions. It may be stated as,
(f.g)=f.g+f.g{{(f.g)}^{'}}={{f}^{'}}.g+f.{{g}^{'}}
or in Leibnitz's notation,
d(u.v)dx=dudx.v+u.dvdx\dfrac{d(u.v)}{dx}=\dfrac{du}{dx}.v+u.\dfrac{dv}{dx}
In different notation it can be written as,
d(uv)=udv+vdud(uv)=udv+vdu
The product rule can be considered a special case of the chain rule for several variables.
So the chain rule is,
d(ab)dx=(ab)adadx+(ab)bdbdx\dfrac{d(ab)}{dx}=\dfrac{\partial (ab)}{\partial a}\dfrac{da}{dx}+\dfrac{\partial (ab)}{\partial b}\dfrac{db}{dx}
So we have to use the Leibnitz theorem,
ddx(uv)=dudxv+udvdx.{\displaystyle {\dfrac {d}{dx}}(u\cdot v)={\dfrac {du}{dx}}\cdot v+u\cdot {\dfrac {dv}{dx}}.} So Leibnitz Theorem provides a useful formula for computing the nth{{n}^{th}} derivative of a product of two functions. This theorem (Leibnitz theorem) is also called a theorem for successive differentiation.
This theorem is used for finding the nth{{n}^{th}} derivative of a product. The Leibnitz formula expresses the derivative on nth{{n}^{th}} order of the product of two functions.
If y=u.vy=u.v then dndxn(u.v)=uvn+nc1u1vn1+nc2u2vn2+.......+ncrurvnr+....+unv\dfrac{{{d}^{n}}}{d{{x}^{n}}}(u.v)=u{{v}_{n}}+{}^{n}{{c}_{1}}{{u}_{1}}{{v}_{n-1}}+{}^{n}{{c}_{2}}{{u}_{2}}{{v}_{n-2}}+.......+{}^{n}{{c}_{r}}{{u}_{r}}{{v}_{n-r}}+....+{{u}_{n}}{{v}_{{}}} ……(1)
Now Let us consider u=1x2u=1-{{x}^{2}} and v=cosxv=\cos x .
Here now differentiating uu for first derivative u1{{u}_{1}} ,then second derivative u2{{u}_{2}} and then third derivative u3{{u}_{3}} .
So we get,
So u1=2x{{u}_{1}}=-2x , u2=2{{u}_{2}}=-2 , u3=0{{u}_{3}}=0 …..(2)
Also differentiating for vv , For first , second, nthnth derivatives , (n1)th{{(n-1)}^{th}} derivatives, (n2)nd{{(n-2)}^{nd}} derivative, and(n3)rd{{(n-3)}^{rd}}derivatives,
So we get the derivatives as,
same for v1=sinx=cos(π2+x){{v}_{1}}=-\sin x=\cos \left( \dfrac{\pi }{2}+x \right) , v2=sin(π2+x)=cos(π2+π2+x)=cos(2π2+x){{v}_{2}}=-\sin \left( \dfrac{\pi }{2}+x \right)=\cos \left( \dfrac{\pi }{2}+\dfrac{\pi }{2}+x \right)=\cos \left( \dfrac{2\pi }{2}+x \right) ,
v3=sin(2π2+x)=cos(π2+2π2+x)=cos(3π2+x){{v}_{3}}=-\sin \left( \dfrac{2\pi }{2}+x \right)=\cos \left( \dfrac{\pi }{2}+\dfrac{2\pi }{2}+x \right)=\cos \left( \dfrac{3\pi }{2}+x \right) .
So at vn=cos(nπ2+x){{v}_{n}}=\cos \left( \dfrac{n\pi }{2}+x \right) , vn1=cos((n1)π2+x){{v}_{n-1}}=\cos \left( \dfrac{(n-1)\pi }{2}+x \right) ………(3)
So above we have made conversions don’t jumble in these conversions.
As we have find out the values of u1,u2,u3{{u}_{1}},{{u}_{2}},{{u}_{3}} and vn,vn1,vn2,vn3{{v}_{n}},{{v}_{n-1}},{{v}_{n-2}},{{v}_{n-3}} ,
So substituting (2) and (3) in (1), that is substituting in Leibnitz theorem,
So We get,
dndxn((1x2)cosx)=(1x2)cos(nπ2+x)+nc1(2x)cos((n1)π2+x)+nc2(2)cos((n2)π2+x)\dfrac{{{d}^{n}}}{d{{x}^{n}}}((1-{{x}^{2}})\cos x)=(1-{{x}^{2}})\cos \left( \dfrac{n\pi }{2}+x \right)+{}^{n}{{c}_{1}}(-2x)\cos \left( \dfrac{(n-1)\pi }{2}+x \right)+{}^{n}{{c}_{2}}(-2)\cos \left( \dfrac{(n-2)\pi }{2}+x \right)
dndxn((1x2)cosx)=(1x2)cos(nπ2+x)+n(2x)cos((n1)π2+x)+n(n1)2(2)cos((n2)π2+x)\dfrac{{{d}^{n}}}{d{{x}^{n}}}((1-{{x}^{2}})\cos x)=(1-{{x}^{2}})\cos \left( \dfrac{n\pi }{2}+x \right)+n(-2x)\cos \left( \dfrac{(n-1)\pi }{2}+x \right)+\dfrac{n(n-1)}{2}(-2)\cos \left( \dfrac{(n-2)\pi }{2}+x \right)
So simplifying in simple manner, we get,
dndxn((1x2)cosx)=(1x2)cos(nπ2+x)2nxcos((n1)π2+x)n(n1)cos((n2)π2+x)\dfrac{{{d}^{n}}}{d{{x}^{n}}}((1-{{x}^{2}})\cos x)=(1-{{x}^{2}})\cos \left( \dfrac{n\pi }{2}+x \right)-2nx\cos \left( \dfrac{(n-1)\pi }{2}+x \right)-n(n-1)\cos \left( \dfrac{(n-2)\pi }{2}+x \right)
As it is given in question that 2n2n is used,
So We want to find y2n{{y}_{2n}} so substituting 2n2n in place of nn ,
So we get,
d2ndx2n((1x2)cosx)=(1x2)cos(2nπ2+x)4nxcos((2n1)π2+x)2n(2n1)cos((2n2)π2+x)\dfrac{{{d}^{2n}}}{d{{x}^{2n}}}((1-{{x}^{2}})\cos x)=(1-{{x}^{2}})\cos \left( \dfrac{2n\pi }{2}+x \right)-4nx\cos \left( \dfrac{(2n-1)\pi }{2}+x \right)-2n(2n-1)\cos \left( \dfrac{(2n-2)\pi }{2}+x \right)
So the final answer is,
y2n=(1x2)cos(2nπ2+x)4nxcos((2n1)π2+x)2n(2n1)cos((n1)π+x){{y}_{2n}}=(1-{{x}^{2}})\cos \left( \dfrac{2n\pi }{2}+x \right)-4nx\cos \left( \dfrac{(2n-1)\pi }{2}+x \right)-2n(2n-1)\cos \left( (n-1)\pi +x \right)
So we can see in y2n{{y}_{2n}} ,
So if we take a term cos(2nπ2+x)=cos(nπ+x)\cos \left( \dfrac{2n\pi }{2}+x \right)=\cos \left( n\pi +x \right) ,
Of we take the value of nn as 2k2k i.e. even number the output we get as cosx\cos x ,
And if we take nn as 2k12k-1 i.e. odd number the output we get as cosx-\cos x ,
So similarly if we take for term cos((2n1)π2+x)\cos \left( \dfrac{(2n-1)\pi }{2}+x \right) ,
So if we take the value of nn as 2k2k i.e. even number the output we get as sinx\sin x ,
And for nn as 2k12k-1 i.e. odd number the output we get as sinx-\sin x,
So for the term cos((2n2)π2+x)=cos((n1)π+x)\cos \left( \dfrac{(2n-2)\pi }{2}+x \right)=\cos \left( (n-1)\pi +x \right) ,
So if we take the value of nn as 2k2k i.e. even number the output we get as cosx-\cos x ,
And for nn as 2k12k-1 i.e. odd number the output we get as cosx\cos x ,
So in this way we get the trigonometric identities if nn is even or odd.

Note: Hence Be careful while solving the Leibnitz theorem. While solving confusion occurs. Be careful of using and converting sin and cos such as v1=sinx=cos(π2+x){{v}_{1}}=-\sin x=\cos \left( \dfrac{\pi }{2}+x \right) . Also use proper uu and vv substitution. Substitute uu and vv in a proper manner, don't jumble yourself.