Solveeit Logo

Question

Question: Find the value of \({{y}_{20}}\), when \(y={{x}^{3}}\sin x\), find \({{y}_{20}}\)....

Find the value of y20{{y}_{20}}, when y=x3sinxy={{x}^{3}}\sin x, find y20{{y}_{20}}.

Explanation

Solution

Hint: In this question first we will select a term as uu and vv. Differentiate it till when one of them gets zero by using Leibnitz theorem.

Complete step-by-step answer:

Here We have to find y20{{y}_{20}}
The product rule is a formula used to find the derivatives of products of two or more functions. It may be stated as,
(f.g)=f.g+f.g{{(f.g)}^{'}}={{f}^{'}}.g+f.{{g}^{'}}
or in Leibnitz's notation,
d(u.v)dx=dudx.v+u.dvdx\dfrac{d(u.v)}{dx}=\dfrac{du}{dx}.v+u.\dfrac{dv}{dx}
In different notation it can be written as,
d(uv)=udv+vdud(uv)=udv+vdu
The product rule can be considered a special case of the chain rule for several variables.
So the chain rule is,
d(ab)dx=(ab)adadx+(ab)bdbdx\dfrac{d(ab)}{dx}=\dfrac{\partial (ab)}{\partial a}\dfrac{da}{dx}+\dfrac{\partial (ab)}{\partial b}\dfrac{db}{dx}
So we have to use the Leibnitz theorem,
So Leibnitz Theorem provides a useful formula for computing the nth{{n}^{th}} derivative of a product of two functions. This theorem (Leibnitz theorem) is also called a theorem for successive differentiation.
This theorem is used for finding the nth{{n}^{th}} derivative of a product. The Leibnitz formula expresses the derivative on nth{{n}^{th}} order of the product of two functions.
If y=u.vy=u.v then dndxn(u.v)=uvn+nc1u1vn1+nc2u2vn2+.......+ncrurvnr+....+unv\dfrac{{{d}^{n}}}{d{{x}^{n}}}(u.v)=u{{v}_{n}}+{}^{n}{{c}_{1}}{{u}_{1}}{{v}_{n-1}}+{}^{n}{{c}_{2}}{{u}_{2}}{{v}_{n-2}}+.......+{}^{n}{{c}_{r}}{{u}_{r}}{{v}_{n-r}}+....+{{u}_{n}}{{v}_{{}}}……(1)
Now Let us consider u=x3u={{x}^{3}} and v=sinxv=\sin x
Here now differentiating uu for first derivative u1{{u}_{1}}, then second derivative u2{{u}_{2}} and then third derivative u3{{u}_{3}}.
So we get,
So u1=3x2{{u}_{1}}=3{{x}^{2}}, u2=6x{{u}_{2}}=6x,u3=6{{u}_{3}}=6,u4=0{{u}_{4}}=0…..(2)
Also differentiating for vv, For first , second,nthnth derivatives , (n1)th{{(n-1)}^{th}} derivatives, (n2)nd{{(n-2)}^{nd}} derivative, and (n3)rd{{(n-3)}^{rd}}derivatives,
So we get the derivatives as,
v1=cosx=sin(π2+x){{v}_{1}}=\cos x=\sin \left( \dfrac{\pi }{2}+x \right),v2=cos(π2+x)=sin(π2+π2+x)=sin(2π2+x){{v}_{2}}=\cos \left( \dfrac{\pi }{2}+x \right)=\sin \left( \dfrac{\pi }{2}+\dfrac{\pi }{2}+x \right)=\sin \left( \dfrac{2\pi }{2}+x \right),
v3=sin(3π2+x){{v}_{3}}=\sin \left( \dfrac{3\pi }{2}+x \right)
So at vn=sin(nπ2+x){{v}_{n}}=\sin \left( \dfrac{n\pi }{2}+x \right),vn1=sin((n1)π2+x){{v}_{n-1}}=\sin \left( \dfrac{(n-1)\pi }{2}+x \right),vn2=sin((n2)π2+x){{v}_{n-2}}=\sin \left( \dfrac{(n-2)\pi }{2}+x \right),vn3=sin((n3)π2+x){{v}_{n-3}}=\sin \left( \dfrac{(n-3)\pi }{2}+x \right)………(3)
So above I have made conversions don’t jumble in these conversions.
As we have find out the values ofu1,u2,u3{{u}_{1}},{{u}_{2}},{{u}_{3}} and vn,vn1,vn2,vn3{{v}_{n}},{{v}_{n-1}},{{v}_{n-2}},{{v}_{n-3}},
So substituting (2) and (3) in (1), that is substituting in Leibnitz theorem,
So we get,
\Rightarrow dndxn((x3)sinx)=x3sin(nπ2+x)+nc13x2sin((n1)π2+x)+nc26xsin((n2)π2+x)+nc36sin((n3)π2+x)\dfrac{{{d}^{n}}}{d{{x}^{n}}}(({{x}^{3}})\sin x)={{x}^{3}}\sin \left( \dfrac{n\pi }{2}+x \right)+{}^{n}{{c}_{1}}3{{x}^{2}}\sin \left( \dfrac{(n-1)\pi }{2}+x \right)+{}^{n}{{c}_{2}}6x\sin \left( \dfrac{(n-2)\pi }{2}+x \right)+{}^{n}{{c}_{3}}6\sin \left( \dfrac{(n-3)\pi }{2}+x \right)
\Rightarrow dndxn((x3)sinx)=x3sin(nπ2+x)+3nx2sin((n1)π2+x)+n(n1)26xsin((n2)π2+x)+n(n1)(n2)66sin((n3)π2+x)\dfrac{{{d}^{n}}}{d{{x}^{n}}}(({{x}^{3}})\sin x)={{x}^{3}}\sin \left( \dfrac{n\pi }{2}+x \right)+3n{{x}^{2}}\sin \left( \dfrac{(n-1)\pi }{2}+x \right)+\dfrac{n(n-1)}{2}6x\sin \left( \dfrac{(n-2)\pi }{2}+x \right)+\dfrac{n(n-1)(n-2)}{6}6\sin \left( \dfrac{(n-3)\pi }{2}+x \right)
So simplifying in simple manner we get,
\Rightarrow dndxn((x3)sinx)=x3sin(nπ2+x)+3nx2sin((n1)π2+x)+3n(n1)xsin((n2)π2+x)+n(n1)(n2)sin((n3)π2+x)\dfrac{{{d}^{n}}}{d{{x}^{n}}}(({{x}^{3}})\sin x)={{x}^{3}}\sin \left( \dfrac{n\pi }{2}+x \right)+3n{{x}^{2}}\sin \left( \dfrac{(n-1)\pi }{2}+x \right)+3n(n-1)x\sin \left( \dfrac{(n-2)\pi }{2}+x \right)+n(n-1)(n-2)\sin \left( \dfrac{(n-3)\pi }{2}+x \right)
Heren=20n=20so substituting nn as2020, As it is given in question asy20{{y}_{20}}, so here n=20n=20,
d20dx20((x3)sinx)=x3sin(20π2+x)+60x2sin((201)π2+x)+60(201)xsin((202)π2+x)+20(201)(202)sin((203)π2+x) d20dx20((x3)sinx)=x3sin(20π2+x)+60x2sin(19π2+x)+1140xsin(18π2+x)+6840sin(17π2+x) \begin{aligned} & \dfrac{{{d}^{20}}}{d{{x}^{20}}}(({{x}^{3}})\sin x)={{x}^{3}}\sin \left( \dfrac{20\pi }{2}+x \right)+60{{x}^{2}}\sin \left( \dfrac{(20-1)\pi }{2}+x \right)+60(20-1)x\sin \left( \dfrac{(20-2)\pi }{2}+x \right)+20(20-1)(20-2)\sin \left( \dfrac{(20-3)\pi }{2}+x \right) \\\ & \dfrac{{{d}^{20}}}{d{{x}^{20}}}(({{x}^{3}})\sin x)={{x}^{3}}\sin \left( \dfrac{20\pi }{2}+x \right)+60{{x}^{2}}\sin \left( \dfrac{19\pi }{2}+x \right)+1140x\sin \left( \dfrac{18\pi }{2}+x \right)+6840\sin \left( \dfrac{17\pi }{2}+x \right) \\\ \end{aligned}
Hence we get solution as,
Hence y20=x3sin(20π2+x)+60x2sin(19π2+x)+1140xsin(18π2+x)+6840sin(17π2+x){{y}_{20}}={{x}^{3}}\sin \left( \dfrac{20\pi }{2}+x \right)+60{{x}^{2}}\sin \left( \dfrac{19\pi }{2}+x \right)+1140x\sin \left( \dfrac{18\pi }{2}+x \right)+6840\sin \left( \dfrac{17\pi }{2}+x \right)
So simplifying we get,
sin(20π2+x)=sinx,sin(19π2+x)=cosx,sin(18π2+x)=sinx,sin(17π2+x)=cosx\sin \left( \dfrac{20\pi }{2}+x \right)=\sin x,\sin \left( \dfrac{19\pi }{2}+x \right)=-\cos x,\sin \left( \dfrac{18\pi }{2}+x \right)=-\sin x,\sin \left( \dfrac{17\pi }{2}+x \right)=\cos x
So substituting we get the final answer as,

y20=x3sinx60x2cosx1140xsinx+6840cosx{{y}_{20}}={{x}^{3}}\sin x-60{{x}^{2}}\cos x-1140x\sin x+6840\cos x

Note: Understand the question first: what is y20{{y}_{20}}. Be careful while solving the Leibnitz theorem. Substitute the proper values of uu and vv. While solving or converting you must take care of signs and angles. So take utmost care while conversion ofsin\sin intocos\cos or vice-versa such as v1=cosx=sin(π2+x){{v}_{1}} = \cos x=\sin \left( \dfrac {\pi }{2}+x \right).