Question
Question: Find the value of \(x,y,z\) if \(\left\\{ 3\left[ \begin{matrix} 2 & 0 \\\ 0 & 2 \\\ ...
Find the value of x,y,z if \left\\{ 3\left[ \begin{matrix} 2 & 0 \\\ 0 & 2 \\\ 2 & 2 \\\ \end{matrix} \right]-4\left[ \begin{matrix} 1 & 1 \\\ -1 & 2 \\\ 3 & 1 \\\ \end{matrix} \right] \right\\}\left[ \begin{matrix} 1 \\\ 2 \\\ \end{matrix} \right]=\left[ \begin{matrix} x-3 \\\ y-1 \\\ 2z \\\ \end{matrix} \right]
Solution
Type of question is based on the matrix. For solving the type of questions we should know the properties based on how to solve these matrix problems. so by using the matrix identity, we will simplify the LHS and RHS side and find out the x,y,z.
Complete step-by-step solution:
So moving ahead with question which we have i.e. \left\\{ 3\left[ \begin{matrix}
2 & 0 \\\
0 & 2 \\\
2 & 2 \\\
\end{matrix} \right]-4\left[ \begin{matrix}
1 & 1 \\\
-1 & 2 \\\
3 & 1 \\\
\end{matrix} \right] \right\\}\left[ \begin{matrix}
1 \\\
2 \\\
\end{matrix} \right]=\left[ \begin{matrix}
x-3 \\\
y-1 \\\
2z \\\
\end{matrix} \right]
On solving the LHS side matrix, by using the identityxa c e bdf=xa cx ex bxdxfx.
we will have;
\left\\{ \left[ \begin{matrix}
6 & 0 \\\
0 & 6 \\\
6 & 6 \\\
\end{matrix} \right]-\left[ \begin{matrix}
4 & 4 \\\
-4 & 8 \\\
12 & 4 \\\
\end{matrix} \right] \right\\}\left[ \begin{matrix}
1 \\\
2 \\\
\end{matrix} \right]=\left[ \begin{matrix}
x-3 \\\
y-1 \\\
2z \\\
\end{matrix} \right]
Now again using the identity of subtraction and addition of matrices in the LHS side i.e. \left\\{ \left[ \begin{matrix}
a & b \\\
c & d \\\
e & f \\\
\end{matrix} \right]-\left[ \begin{matrix}
g & h \\\
i & j \\\
k & l \\\
\end{matrix} \right] \right\\}=\left[ \begin{matrix}
a-g & b-h \\\
c-i & d-j \\\
e-k & f-l \\\
\end{matrix} \right] , we will have;
\begin{aligned}
& \left\\{ \left[ \begin{matrix}
6-4 & 0-4 \\\
0-(-4) & 6-8 \\\
6-12 & 6-4 \\\
\end{matrix} \right] \right\\}\left[ \begin{matrix}
1 \\\
2 \\\
\end{matrix} \right]=\left[ \begin{matrix}
x-3 \\\
y-1 \\\
2z \\\
\end{matrix} \right] \\\
& \left\\{ \left[ \begin{matrix}
2 & -4 \\\
4 & -2 \\\
-6 & 2 \\\
\end{matrix} \right] \right\\}\left[ \begin{matrix}
1 \\\
2 \\\
\end{matrix} \right]=\left[ \begin{matrix}
x-3 \\\
y-1 \\\
2z \\\
\end{matrix} \right] \\\
\end{aligned}
As still there are two matrices in the LHS side, so reduce them to a single matrix as we have in the RHS side. So by using the property of multiplication of two matrices i.e. \left\\{ \left[ \begin{matrix}
a & b \\\
c & d \\\
e & f \\\
\end{matrix} \right] \right\\}\left[ \begin{matrix}
g \\\
h \\\
\end{matrix} \right]=\left[ \begin{matrix}
ag+bh \\\
cg+dh \\\
eg+fh \\\
\end{matrix} \right], we will have;