Question
Question: Find the value of (x+y), if x = \[{\text{tan1}}^\circ + \tan 2^\circ + .......... + \tan 45^\circ \]...
Find the value of (x+y), if x = tan1∘+tan2∘+..........+tan45∘ and y = −(cot46∘ + cot47∘ + ........ + cot89∘).
A. 1 B. 0 C. - 1 D. 23
Solution
Hint: To find x + y, convert both x and y into the same trigonometric function/parameter using the trigonometric identities of either tanθ or cotθ.
Complete step-by-step answer:
Given data,
x = tan1∘+tan2∘+..........+tan45∘ and y = −(cot46∘ + cot47∘ + ........ + cot89∘)
⟹x + y = tan1∘+tan2∘+..........+tan45∘+ (−(cot46∘ + cot47∘ + ........ + cot89∘))
⟹x + y = tan1∘+tan2∘+..........+tan45∘- cot46∘−cot47∘−..........−cot89∘
We know, from the trigonometric table of tangent function,
tan(90∘−θ)=cotθ ⇒cot(90∘−θ)=tanθ ---- (Put 90-θ in place of θ in the above to derive this)
⟹x + y= tan1∘+tan2∘+..........+tan45∘-cot(90−44)∘−cot(90−43)∘−..........−cot(90−1)∘
⟹x + y=tan1∘+tan2∘+..........+tan45∘-tan(44)∘−tan(43)∘−..........−tan(1)∘
⟹x + y= 0 + 0 +………+ tan45∘
⟹x + y = 1 (from trigonometric table, tan45∘= 1)
Hence, Option A is the correct answer.
Note: In order to solve these types of questions, look out for all the given trigonometric functions in the question and find out the relation between them. Using that convert one function into the other and then solve for the answer. A good knowledge in trigonometric table and its identities helps arrive at the answer faster.