Solveeit Logo

Question

Mathematics Question on Matrices

Find the value of x, y, and z from the following equation:
I.[43\x5]=[yz\15]\begin{bmatrix} 4&3&\\\x&5\end{bmatrix}=\begin{bmatrix}y&z\\\1&5\end{bmatrix}

II. [x+y2\5+zxy]=[62\58]\begin{bmatrix}x+y&2\\\5+z&xy\end{bmatrix}=\begin{bmatrix}6&2\\\5&8\end{bmatrix}

III. [x+y+z\x+z\y+z]=[9\5\7]\begin{bmatrix}x+y+z\\\x+z\\\y+z\end{bmatrix}=\begin{bmatrix}9\\\5\\\7\end{bmatrix}

Answer

(i) [43\x5]=[yz\15]\begin{bmatrix} 4&3&\\\x&5\end{bmatrix}=\begin{bmatrix}y&z\\\1&5\end{bmatrix}As the given matrices are equal, their corresponding elements are also equal.
Comparing the corresponding elements, we get :x = 1, y = 4, and z = 3


(ii) [x+y2\5+zxy]=[62\58]\begin{bmatrix}x+y&2\\\5+z&xy\end{bmatrix}=\begin{bmatrix}6&2\\\5&8\end{bmatrix} As the given matrices are equal, their corresponding elements are also equal.
Comparing the corresponding elements, we get:
x + y = 6, xy = 8, 5 + z = 5
Now, 5 + z = 5 \Rightarrow z = 0
We know that:
(x − y)2= (x + y)2− 4xy
\Rightarrow (x − y)2 = 36 − 32 = 4
\Rightarrow x − y = ±2
Now, when x − y = 2 and x + y = 6, we get x= 4 and y = 2
When x − y = − 2 and x + y = 6, we get x = 2 and y = 4
∴x = 4, y = 2, and z = 0 or x = 2, y = 4, and z = 0


(iii) [x+y+z\x+z\y+z]=[9\5\7]\begin{bmatrix}x+y+z\\\x+z\\\y+z\end{bmatrix}=\begin{bmatrix}9\\\5\\\7\end{bmatrix} As the two matrices are equal, their corresponding elements are also equal.
Comparing the corresponding elements, we get:
x + y + z = 9 … (1)
x + z = 5 … (2)
y + z = 7 … (3)
From (1) and (2), we have:
y + 5 = 9
\Rightarrow y = 4
Then, from (3), we have:
4 + z = 7
\Rightarrow z = 3
∴ x + z = 5
\Rightarrow x = 2
∴ x = 2, y = 4, and z = 3