Solveeit Logo

Question

Question: Find the value of x satisfying the following inverse trigonometric equation \(2{{\tan }^{-1}}\cos ...

Find the value of x satisfying the following inverse trigonometric equation
2tan1cosx=tan1(2cscx)2{{\tan }^{-1}}\cos x={{\tan }^{-1}}\left( 2\csc x \right)

Explanation

Solution

Hint: Take tan on both sides of the equation and use the fact that tan(tan1x)=x\tan \left( {{\tan }^{-1}}x \right)=x and tan2x=2tanx1tan2x\tan 2x=\dfrac{2\tan x}{1-{{\tan }^{2}}x}. Use 1cos2x=sin2x1-{{\cos }^{2}}x={{\sin }^{2}}x and cscx=1sinx\csc x=\dfrac{1}{\sin x} and hence prove that tan(2tan1cosx)=cosxsin2x\tan \left( 2{{\tan }^{-1}}\cos x \right)=\dfrac{\cos x}{{{\sin }^{2}}x} and tan(tan1(2cscx))=2sinx\tan \left( {{\tan }^{-1}}\left( 2\csc x \right) \right)=\dfrac{2}{\sin x}. Hence prove that the given equation is equivalent to cosx=sinx\cos x=\sin x. Divide both sides of the equation by cosx and use the fact that if tanx=tany\tan x=\tan y then x=nπ+y,nZx=n\pi +y,n\in \mathbb{Z}. Remove the extraneous roots and hence find the solution of the given equation. Verify by substituting in the given equation.

Complete step-by-step solution -
We have 2tan1(cosx)=tan1(2cscx)2{{\tan }^{-1}}\left( \cos x \right)={{\tan }^{-1}}\left( 2\csc x \right)
Taking tangents on both sides, we get
tan(2tan1cosx)=tan(tan1(2cscx)) (i)\tan \left( 2{{\tan }^{-1}}\cos x \right)=\tan \left( {{\tan }^{-1}}\left( 2\csc x \right) \right)\text{ }\left( i \right)
Simplifying tan(2tan1cosx)\tan \left( 2{{\tan }^{-1}}\cos x \right)
We know that tan2x=2tanx1tan2x\tan 2x=\dfrac{2\tan x}{1-{{\tan }^{2}}x}
Hence, we have
tan(2tan1cosx)=2tan(tan1cosx)1tan2(tan1cosx)\tan \left( 2{{\tan }^{-1}}\cos x \right)=\dfrac{2\tan \left( {{\tan }^{-1}}\cos x \right)}{1-{{\tan }^{2}}\left( {{\tan }^{-1}}\cos x \right)}
We know that tan(tan1x)=xxR\tan \left( {{\tan }^{-1}}x \right)=x\forall x\in \mathbb{R}
Using the above identity, we get
tan(2tan1cosx)=2cosx1cos2x\tan \left( 2{{\tan }^{-1}}\cos x \right)=\dfrac{2\cos x}{1-{{\cos }^{2}}x}
We know that 1cos2x=sin2x1-{{\cos }^{2}}x={{\sin }^{2}}x
Hence, we have
tan(2tan1cosx)=2cosxsin2x\tan \left( 2{{\tan }^{-1}}\cos x \right)=\dfrac{2\cos x}{{{\sin }^{2}}x}
Simplifying tan(tan12cscx)\tan \left( {{\tan }^{-1}}2\csc x \right)
We know that tan(tan1x)=xxR\tan \left( {{\tan }^{-1}}x \right)=x\forall x\in \mathbb{R}
Hence, we have
tan(tan12cscx)=2cscx\tan \left( {{\tan }^{-1}}2\csc x \right)=2\csc x
We know that cscx=1sinx\csc x=\dfrac{1}{\sin x}
Using the above identity, we get
tan(tan1(2cscx))=2sinx\tan \left( {{\tan }^{-1}}\left( 2\csc x \right) \right)=\dfrac{2}{\sin x}
Hence the equation(i) becomes
cosxsin2x=1sinx\dfrac{\cos x}{{{\sin }^{2}}x}=\dfrac{1}{\sin x}
Multiplying both sides by sin2x{{\sin }^{2}}x, we get
cosx=sinx\cos x=\sin x
Dividing both sides by cosx, we get
sinxcosx=1\dfrac{\sin x}{\cos x}=1
We know that sinxcosx=tanx\dfrac{\sin x}{\cos x}=\tan x
Hence, we have
tanx=1\tan x=1
We know that tan(π4)=1\tan \left( \dfrac{\pi }{4} \right)=1
Hence, we have
tanx=tan(π4)\tan x=\tan \left( \dfrac{\pi }{4} \right)
We know that if tanx=tany, then x=nπ+y,nZx=n\pi +y,n\in \mathbb{Z}
Hence, we have
x=nπ+π4,nZx=n\pi +\dfrac{\pi }{4},n\in \mathbb{Z} which is the required solution of the given equation.

Note: Verification:
We have if n is odd
cos(x)=12\cos \left( x \right)=\dfrac{-1}{\sqrt{2}} and cscx=2\csc x=-\sqrt{2}
Hence, we have
tan1(2cscx)=tan122=tan1(2×121(12)2)=2tan112{{\tan }^{-1}}\left( 2\csc x \right)=-{{\tan }^{-1}}2\sqrt{2}=-{{\tan }^{-1}}\left( \dfrac{2\times \dfrac{1}{\sqrt{2}}}{1-{{\left( \dfrac{1}{\sqrt{2}} \right)}^{2}}} \right)=-2{{\tan }^{-1}}\dfrac{1}{\sqrt{2}} and 2tan1cosx=2tan1122{{\tan }^{-1}}\cos x=-2{{\tan }^{-1}}\dfrac{1}{\sqrt{2}}
Hence, we have
tan1(2cscx)=2tan1(cosx){{\tan }^{-1}}\left( 2\csc x \right)=2{{\tan }^{-1}}\left( \cos x \right)
Similarly when n is even tan1(2cscx)=2tan1(cosx){{\tan }^{-1}}\left( 2\csc x \right)=2{{\tan }^{-1}}\left( \cos x \right)
Hence our answer is verified to be correct.