Solveeit Logo

Question

Question: Find the value of x in the value , if \[\left| \begin{matrix} x+1 & x-1 \\\ x-3 & x+2 \\\ ...

Find the value of x in the value , if x+1x1 x3x+2 =41 13 \left| \begin{matrix} x+1 & x-1 \\\ x-3 & x+2 \\\ \end{matrix} \right|=\left| \begin{matrix} 4 & -1 \\\ 1 & 3 \\\ \end{matrix} \right|.

Explanation

Solution

Hint: Reduce the determinant in its simplified form by elementary row\column transformation methods. Find the value of x from the reduced equation.

Complete step-by-step answer:

The given determinant equation of unknown x is x+1x1 x3x+2 =41 13 \left| \begin{matrix} x+1 & x-1 \\\ x-3 & x+2 \\\ \end{matrix} \right|=\left| \begin{matrix} 4 & -1 \\\ 1 & 3 \\\ \end{matrix} \right|.

We know from the properties of elementary row/column transformation that if ab cd \left| \begin{matrix} a & b \\\ c & d \\\ \end{matrix} \right| is a second order determinant then ab cd =ab cadb \left| \begin{matrix} a & b \\\ c & d \\\ \end{matrix} \right|=\left| \begin{matrix} a & b \\\ c-a & d-b \\\ \end{matrix} \right|.

This is an elementary row transformation.

The second row has been replaced by the difference between first and second row.
So, using the above property from x+1x1 x3x+2 =41 13 \left| \begin{matrix} x+1 & x-1 \\\ x-3 & x+2 \\\ \end{matrix} \right|=\left| \begin{matrix} 4 & -1 \\\ 1 & 3 \\\ \end{matrix} \right| we get,
\Rightarrow x+1x1 (x3)(x+1)(x+2)(x1) =41 13 \left| \begin{matrix} x+1 & x-1 \\\ (x-3)-(x+1) & (x+2)-(x-1) \\\ \end{matrix} \right|=\left| \begin{matrix} 4 & -1 \\\ 1 & 3 \\\ \end{matrix} \right| [From the properties of determinants]
\Rightarrow x+1x1 43 =41 13 \left| \begin{matrix} x+1 & x-1 \\\ -4 & 3 \\\ \end{matrix} \right|=\left| \begin{matrix} 4 & -1 \\\ 1 & 3 \\\ \end{matrix} \right| ……………….. (1)

We know that that if ab cd \left| \begin{matrix} a & b \\\ c & d \\\ \end{matrix} \right| is a second order determinant then the expanded form of the determinant is adbcad-bc.

Hence,ab cd =adbc\left| \begin{matrix} a & b \\\ c & d \\\ \end{matrix} \right|=ad-bc.

So, from (1) we get, 3(x+1)(4)(x1)=431(1)3(x+1)-(-4)(x-1)=4\cdot 3-1\cdot (-1) [Applying the above rule]
\Rightarrow 3x+3+4x4=12+13x+3+4x-4=12+1
\Rightarrow 7x1=137x-1=13
\Rightarrow 7x=147x=14
\Rightarrow x=2x=2

Therefore, the only value of x that satisfies the given equation is 2. The value of x=2 can be easily verified by putting the value in place of x and getting equality in both sides.

Hence, the required value of x is 2.

Note: Elementary row transformation has been used in the above solution. We can also use elementary column transformations and both would give the same result. Even if we had not used elementary row/column transformations then also it would give the same result but we have to give some labor to get the result. Elementary transformations have been used here just to simplify the calculation.