Solveeit Logo

Question

Question: Find the value of x in the function- \(\dfrac{\mathrm x-3}{\mathrm x-4}+\dfrac{\mathrm x-5}{\mathr...

Find the value of x in the function-
x3x4+x5x6=103,  x4,  6\dfrac{\mathrm x-3}{\mathrm x-4}+\dfrac{\mathrm x-5}{\mathrm x-6}=\dfrac{10}3,\;\mathrm x\neq4,\;6

Explanation

Solution

Hint:This is a direct question of a linear equation in one variable where we have to find the value of the variable. General algebraic formulas will be used. Also, quadratic formula can be used which is given by-
=b±b24ac2a=\dfrac{-\mathrm b\pm\sqrt{\mathrm b^2-4\mathrm{ac}}}{2\mathrm a}

Complete step-by-step answer:
It is given that
x3x4+x5x6=103\dfrac{\mathrm x-3}{\mathrm x-4}+\dfrac{\mathrm x-5}{\mathrm x-6}=\dfrac{10}3
Taking the LCM, we can write that-
\dfrac{\left(\mathrm x-3\right)\left(\mathrm x-6\right)+\left(\mathrm x-4\right)\left(\mathrm x-5\right)}{\left(\mathrm x-4\right)\left(\mathrm x-6\right)}=\dfrac{10}3\\\\\\\
On cross multiplying and opening the brackets we get,
3(x29x+18+x29x+20)  =  10(x210x+24)3\left( {{{\text{x}}^2} - 9{\text{x}} + 18 + {{\text{x}}^2} - 9{\text{x}} + 20} \right)\; = \;10\left( {{{\text{x}}^2} - 10{\text{x}} + 24} \right)
6x254x+114=10x2100x+2406{{\text{x}}^2} - 54{\text{x}} + 114 = 10{{\text{x}}^2} - 100{\text{x}} + 240
4x246x+126=04{{\text{x}}^2} - 46{\text{x}} + 126 = 0

Dividing  the  equation  by  2Dividing\;the\;equation\;by\;2
2x223x+63=02{{\text{x}}^2} - 23{\text{x}} + 63 = 0
2x214x9x+63=02{{\text{x}}^2} - 14{\text{x}} - 9{\text{x}} + 63 = 0
2x(x7)9(x7)=02x(x - 7) - 9(x - 7) = 0
(2x9)(x7)=0(2x - 9)(x - 7) = 0
x=7,  92\mathrm x=7,\dfrac{\;9}2
These are the values of x, and the required answer.

Note: We can solve the equation using quadratic formula as well but it is a calculative method. It increases the chances of making an error. We should use it only when splitting the middle term is not possible.