Solveeit Logo

Question

Question: Find the value of x if \[{\tan ^{ - 1}}\left( {\dfrac{{x - 3}}{{x - 4}}} \right) + {\tan ^{ - 1}}\le...

Find the value of x if tan1(x3x4)+tan1(x+3x+4)=π4{\tan ^{ - 1}}\left( {\dfrac{{x - 3}}{{x - 4}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{{x + 3}}{{x + 4}}} \right) = \dfrac{\pi }{4}.

Explanation

Solution

Here, we have to solve the given equation and find the value of xx. We will use the formula for the sum of trigonometric inverse of two angles to simplify the equation. Then, you need to solve the equation for xx.

Formula Used: We will use the formula tan1A+tan1B=tan1(A+B1AB){\tan ^{ - 1}}A + {\tan ^{ - 1}}B = {\tan ^{ - 1}}\left( {\dfrac{{A + B}}{{1 - AB}}} \right) and (ab)(a+b)=a2b2\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}.

Complete step-by-step answer:
We will use the formula for the sum of trigonometric inverse of two angles to simplify the equation.
We know that the sum of trigonometric inverse of two angles AA and BB is given by tan1A+tan1B=tan1(A+B1AB){\tan ^{ - 1}}A + {\tan ^{ - 1}}B = {\tan ^{ - 1}}\left( {\dfrac{{A + B}}{{1 - AB}}} \right).
Substituting A=x3x4A = \dfrac{{x - 3}}{{x - 4}} and B=x+3x+4B = \dfrac{{x + 3}}{{x + 4}} in the formula, we get
tan1(x3x4)+tan1(x+3x+4)=tan1[x3x4+x+3x+41(x3x4)(x+3x+4)]\Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{x - 3}}{{x - 4}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{{x + 3}}{{x + 4}}} \right) = {\tan ^{ - 1}}\left[ {\dfrac{{\dfrac{{x - 3}}{{x - 4}} + \dfrac{{x + 3}}{{x + 4}}}}{{1 - \left( {\dfrac{{x - 3}}{{x - 4}}} \right)\left( {\dfrac{{x + 3}}{{x + 4}}} \right)}}} \right]
Substituting tan1(x3x4)+tan1(x+3x+4)=π4{\tan ^{ - 1}}\left( {\dfrac{{x - 3}}{{x - 4}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{{x + 3}}{{x + 4}}} \right) = \dfrac{\pi }{4} in the equation, we get
π4=tan1[x3x4+x+3x+41(x3x4)(x+3x+4)]\Rightarrow \dfrac{\pi }{4} = {\tan ^{ - 1}}\left[ {\dfrac{{\dfrac{{x - 3}}{{x - 4}} + \dfrac{{x + 3}}{{x + 4}}}}{{1 - \left( {\dfrac{{x - 3}}{{x - 4}}} \right)\left( {\dfrac{{x + 3}}{{x + 4}}} \right)}}} \right]
Now, we will simplify the expression.
Rewriting the expression, we get
π4=tan1[x3x4+x+3x+41(x3)(x+3)(x4)(x+4)]\Rightarrow \dfrac{\pi }{4} = {\tan ^{ - 1}}\left[ {\dfrac{{\dfrac{{x - 3}}{{x - 4}} + \dfrac{{x + 3}}{{x + 4}}}}{{1 - \dfrac{{\left( {x - 3} \right)\left( {x + 3} \right)}}{{\left( {x - 4} \right)\left( {x + 4} \right)}}}}} \right]
We know that the product of sum and difference of two numbers is given by the algebraic identity (ab)(a+b)=a2b2\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}.
Using the algebraic identity to simplify the expression, we get
π4=tan1[x3x4+x+3x+41x29x216]\Rightarrow \dfrac{\pi }{4} = {\tan ^{ - 1}}\left[ {\dfrac{{\dfrac{{x - 3}}{{x - 4}} + \dfrac{{x + 3}}{{x + 4}}}}{{1 - \dfrac{{{x^2} - 9}}{{{x^2} - 16}}}}} \right]
Taking the L.C.M., we get
π4=tan1[(x3)(x+4)+(x+3)(x4)(x4)(x+4)x216x2+9x216]\Rightarrow \dfrac{\pi }{4} = {\tan ^{ - 1}}\left[ {\dfrac{{\dfrac{{\left( {x - 3} \right)\left( {x + 4} \right) + \left( {x + 3} \right)\left( {x - 4} \right)}}{{\left( {x - 4} \right)\left( {x + 4} \right)}}}}{{\dfrac{{{x^2} - 16 - {x^2} + 9}}{{{x^2} - 16}}}}} \right]
Using the algebraic identity (ab)(a+b)=a2b2\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2} again, we get
π4=tan1[(x3)(x+4)+(x+3)(x4)x216x216x2+9x216]\Rightarrow \dfrac{\pi }{4} = {\tan ^{ - 1}}\left[ {\dfrac{{\dfrac{{\left( {x - 3} \right)\left( {x + 4} \right) + \left( {x + 3} \right)\left( {x - 4} \right)}}{{{x^2} - 16}}}}{{\dfrac{{{x^2} - 16 - {x^2} + 9}}{{{x^2} - 16}}}}} \right]
Simplifying the expression, we get
π4=tan1[(x3)(x+4)+(x+3)(x4)x216x2+9] π4=tan1[(x3)(x+4)+(x+3)(x4)7]\begin{array}{l} \Rightarrow \dfrac{\pi }{4} = {\tan ^{ - 1}}\left[ {\dfrac{{\left( {x - 3} \right)\left( {x + 4} \right) + \left( {x + 3} \right)\left( {x - 4} \right)}}{{{x^2} - 16 - {x^2} + 9}}} \right]\\\ \Rightarrow \dfrac{\pi }{4} = {\tan ^{ - 1}}\left[ {\dfrac{{\left( {x - 3} \right)\left( {x + 4} \right) + \left( {x + 3} \right)\left( {x - 4} \right)}}{{ - 7}}} \right]\end{array}
Multiplying the terms of the expression using the distributive property of multiplication, we get
π4=tan1(x2+4x3x12+x24x+3x127)\Rightarrow \dfrac{\pi }{4} = {\tan ^{ - 1}}\left( {\dfrac{{{x^2} + 4x - 3x - 12 + {x^2} - 4x + 3x - 12}}{{ - 7}}} \right)
Adding and subtracting the like terms, we get
π4=tan1(2x2247)\Rightarrow \dfrac{\pi }{4} = {\tan ^{ - 1}}\left( {\dfrac{{2{x^2} - 24}}{{ - 7}}} \right)
Now, we know that the equation p=tan1θp = {\tan ^{ - 1}}\theta can be written as tanp=θ\tan p = \theta .
Therefore, rewriting the equation π4=tan1(2x2247)\dfrac{\pi }{4} = {\tan ^{ - 1}}\left( {\dfrac{{2{x^2} - 24}}{{ - 7}}} \right), we get
tanπ4=2x2247\Rightarrow \tan \dfrac{\pi }{4} = \dfrac{{2{x^2} - 24}}{{ - 7}}
Substituting tanπ4=1\tan \dfrac{\pi }{4} = 1, we get
1=2x2247\Rightarrow 1 = \dfrac{{2{x^2} - 24}}{{ - 7}}
Multiplying both sides by 7 - 7, we get
1×7=(2x2247)(7) 7=2x224\begin{array}{l} \Rightarrow 1 \times - 7 = \left( {\dfrac{{2{x^2} - 24}}{{ - 7}}} \right)\left( { - 7} \right)\\\ \Rightarrow - 7 = 2{x^2} - 24\end{array}
Adding 24 on both sides of the equation, we get
7+24=2x224+24 17=2x2\begin{array}{l} \Rightarrow - 7 + 24 = 2{x^2} - 24 + 24\\\ \Rightarrow 17 = 2{x^2}\end{array}
Dividing both sides by 2, we get
172=x2\Rightarrow \dfrac{{17}}{2} = {x^2}
Finally, taking the square root of both sides, we get
x=±172\Rightarrow x = \pm \sqrt {\dfrac{{17}}{2}}
Therefore, the value of xx is ±172\pm \sqrt {\dfrac{{17}}{2}}.

Note: The equation given to us in the question has inverse trigonometric function. As the name suggests, inverse trigonometric functions are the inverse of basic trigonometric functions. It is also called ‘arc function’ because it gives the length of the arc by performing the opposite operation as a trigonometric function. We have also used the distributive property of multiplication in the solution. The distributive property of multiplication states that (a+b)(c+d)=ac+ad+bc+bd\left( {a + b} \right)\left( {c + d} \right) = a \cdot c + a \cdot d + b \cdot c + b \cdot d.