Question
Question: Find the value of \(x\) if \(\sin 2x = \sin {60^ \circ }\cos {30^ \circ } - \sin {30^ \circ }\cos {6...
Find the value of x if sin2x=sin60∘cos30∘−sin30∘cos60∘
A.20∘
B.15∘
C.30∘
D.45∘
Explanation
Solution
Hint : Use the trigonometric identity sinacosb−cosasinb=sin(a−b).
Given,
sin2x=sin60∘cos30∘−sin30∘cos60∘ …..(i)
As we know
sinacosb−cosasinb=sin(a−b)
When we put a=60,b=30 we get the above equation after assigning value as,
sin60∘cos30∘−sin30∘cos60∘=sin(60∘−30∘)=sin30∘ …(ii)
From (i) & (ii) We get,
sin30∘=sin2x
2x=30∘ x=15∘
Hence the correct option is B.
Note :- In these types of questions we have to apply the basic identities of trigonometry and solve the asked question. We can also assign values of the angles and find the asked value.